①由

=

=


=

得

=


=

②設(shè)

=

,則

由

,得


由


=

得

=

即

=

解得

=

,即

=

③設(shè)

=

,則由塞瓦定理得

,所以

由①知:

=

,即

=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分10分)選修4-1:幾何證明選講
如圖,已知

的兩條角平分線

和

相交于
H,

,
F在

上,且

。

(Ⅰ)證明:
B、
D、
H、
E四點(diǎn)共圓;
(Ⅱ)證明:

平分

。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點(diǎn)

是中心在原點(diǎn),長(zhǎng)軸在x軸上的橢圓的一個(gè)頂點(diǎn),離心率為

,橢圓的左右焦點(diǎn)分別為
F1和
F2 。
(Ⅰ)求橢圓方程;
(Ⅱ)點(diǎn)
M在橢圓上,求⊿
MF1F2面積的最大值;
(Ⅲ)試探究橢圓上是否存在一點(diǎn)
P,使

,若存在,請(qǐng)求出點(diǎn)
P的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知曲線

的極坐標(biāo)方程為

,直線

的參數(shù)方程是:

.
(Ⅰ)求曲線

的直角坐標(biāo)方程,直線

的普通方程;
(Ⅱ)將曲線

橫坐標(biāo)縮短為原來的

,再向左平移1個(gè)單位,得到曲線曲線

,求曲線

上的點(diǎn)到直線

距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知曲線

上任意一點(diǎn)

到點(diǎn)

的距離比它到直線

的距離小1.
(Ⅰ)求曲線

的方程;
(Ⅱ)直線

與曲線

相交于

兩點(diǎn),

設(shè)直線

的斜率分別為

求證:

為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分15分)已知橢圓

的左焦點(diǎn)為
F,左右頂點(diǎn)分別為
A、C,
上頂點(diǎn)為
B,過
F,B,C三點(diǎn)作

,其中圓心
P的坐標(biāo)為

.
(1) 若橢圓的離心率

,求

的方程;
(2)若

的圓心在直線

上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,橢圓

的一個(gè)焦點(diǎn)是
F(1,0),
O為坐標(biāo)原點(diǎn)。

(Ⅰ)已知橢圓短軸的兩個(gè)三等分點(diǎn)與一個(gè)焦點(diǎn)構(gòu)成正三角形,求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)
F的直線l交橢圓于
A、
B兩點(diǎn),若直線
l繞點(diǎn)
F任意轉(zhuǎn)動(dòng),值有

,求
a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓

的中心在原點(diǎn),焦點(diǎn)在

軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為

,離心率為

.
(1)求橢圓

的方程;
(2)過點(diǎn)

作直線

交

于

、

兩點(diǎn),試問:在

軸上是否存在一個(gè)定點(diǎn)

,使

為定值?若存在,求出這個(gè)定點(diǎn)

的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
從雙曲線

=1的左焦點(diǎn)F引圓
x2 +
y2 = 3的切線FP交雙曲線右支于點(diǎn)P,T為切點(diǎn),M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則| MO | – | MT | 等于
。
查看答案和解析>>