【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫(huà)出己知線段的黃金分割點(diǎn),具體方法如下:(l)取線段AB=2,過(guò)點(diǎn)B作AB的垂線,并用圓規(guī)在垂線上截取BC=
AB,連接AC;(2)以C為圓心,BC為半徑畫(huà)弧,交AC于點(diǎn)D;(3)以A為圓心,以AD為半徑畫(huà)弧,交AB于點(diǎn)E.則點(diǎn)E即為線段AB的黃金分割點(diǎn).若在線段AB上隨機(jī)取一點(diǎn)F,則使得BE≤AF≤AE的概率約為( )(參考數(shù)據(jù):
2.236)
![]()
A. 0.236B. 0.382C. 0.472D. 0.618
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,底面為矩形的四棱錐
,
底面
,
,
,
是
的中點(diǎn).
![]()
(1)求四棱錐
的體積;
(2)求
與面
所成角;
(3)在
邊上是否存在一點(diǎn)
,使得
到平面
的距離為
?若存在,求出;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般來(lái)說(shuō),一個(gè)人腳掌越長(zhǎng),他的身高就越高,現(xiàn)對(duì)10名成年人的腳掌
與身高
進(jìn)行測(cè)量,得到數(shù)據(jù)(單位:cm)作為樣本如表所示:
腳掌長(zhǎng)( | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
身高( | 141 | 146 | 154 | 160 | 169 | 176 | 181 | 188 | 197 | 203 |
(1)在上表數(shù)據(jù)中,以“腳掌長(zhǎng)”為橫坐標(biāo),“身高”為縱坐標(biāo),作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近,試求“身高”與“腳掌長(zhǎng)”之間的線性回歸方程
;
(2)若某人的腳掌長(zhǎng)為26.5cm,試估計(jì)此人的身高;
(3)在樣本中,從身高180cm以上的4人中隨機(jī)抽取2人進(jìn)行進(jìn)一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
(參考數(shù)據(jù):
,
,
,
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等軸雙曲線
的兩個(gè)焦點(diǎn)
、
在直線
上,線段
的中點(diǎn)是坐標(biāo)原點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn)
.
(1)若已知下列所給的三個(gè)方程中有一個(gè)是等軸雙曲線
的方程:①
;②
;③
.請(qǐng)推理判斷哪個(gè)是等軸雙曲線
的方程,并求出此雙曲線的實(shí)軸長(zhǎng);
(2)現(xiàn)要在等軸雙曲線
上選一處
建一座碼頭,向
、
兩地轉(zhuǎn)運(yùn)貨物.經(jīng)測(cè)算,從
到
、從
到
修建公路的費(fèi)用都是每單位長(zhǎng)度
萬(wàn)元,則碼頭應(yīng)建在何處,才能使修建兩條公路的總費(fèi)用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
,
, O為DE的中點(diǎn),
.F為
的中點(diǎn),平面
平面BCED.
![]()
(1)求證:平面
平面
.
(2)線段OC上是否存在點(diǎn)G,使得
平面EFG?說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體
中,四邊形
為正方形,
,
,
.
![]()
(1)證明:平面
平面
.
(2)若
平面
,二面角
為
,三棱錐
的外接球的球心為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,拋物線
的準(zhǔn)線被橢圓
截得的線段長(zhǎng)為
.
(1)求橢圓
的方程;
(2)如圖,點(diǎn)
分別是橢圓
的左頂點(diǎn)、左焦點(diǎn)直線
與橢圓
交于不同的兩點(diǎn)
(
都在
軸上方).且
.證明:直線
過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的右焦點(diǎn)
,
,
,
是橢圓上任意三點(diǎn),
,
關(guān)于原點(diǎn)對(duì)稱(chēng)且滿(mǎn)足
.
(1)求橢圓
的方程.
(2)若斜率為
的直線與圓:
相切,與橢圓
相交于不同的兩點(diǎn)
、
,求
時(shí),求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com