已知
是一個等差數(shù)列,且
,
.
(Ⅰ)求
的通項(xiàng)
; (Ⅱ)求
前n項(xiàng)和Sn的最大值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,當(dāng)
時,總有
成立,且
.
(Ⅰ)證明:數(shù)列
是等差數(shù)列,并求數(shù)列
的通項(xiàng)公式;
(Ⅱ)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{
}滿足
,且![]()
(1)求證:數(shù)列{
}是等差數(shù)列;
(2)求數(shù)列{
}的通項(xiàng)公式;
(3)設(shè)數(shù)列{
}的前
項(xiàng)之和
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知等差數(shù)列
,
(
),求證:
仍為等差數(shù)列;
(2)已知等比數(shù)列![]()
),類比上述性質(zhì),寫出一個真命題并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)
已知數(shù)列
,其中
是首項(xiàng)為1,公差為1的等差數(shù)列;
是公差為
的等差數(shù)列;
是公差為
的等差數(shù)列(
).
(Ⅰ)若
= 30,求
;
(Ⅱ)試寫出a30關(guān)于
的關(guān)系式,并求a30的取值范圍;
(Ⅲ)續(xù)寫已知數(shù)列,可以使得
是公差為
3的等差數(shù)列,請你依次類推,把已知數(shù)列推廣為無窮數(shù)列,試寫出
關(guān)于
的關(guān)系式(
N
);
(Ⅳ)在(Ⅲ)條件下,且
,試用
表示此數(shù)列的前100項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)等差數(shù)列
的前
項(xiàng)和為
,且滿足
,
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式
;
(Ⅱ)若數(shù)列
滿足
且
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
記等差數(shù)列{
}的前n項(xiàng)和為
,已知
,
.
(Ⅰ)求數(shù)列{
}的通項(xiàng)公式;
(Ⅱ)令![]()
,求數(shù)列{
}的前項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列
中的
、
、
.
(1)求數(shù)列
的通項(xiàng)公式; (2)數(shù)列
的前n項(xiàng)和為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知等差數(shù)列
的公差大于0,且
是方程
的兩根,數(shù)列
的前
項(xiàng)的和為
,且
.
(1)求數(shù)列
,
的通項(xiàng)公式;
(2)記
,求證:
;
(3)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com