已知點
,
,
則在
≤0表示的平面區(qū)域內的點是 ( )
A.
,
B.
,
C.
,
D.
,![]()
科目:高中數(shù)學 來源: 題型:
| a |
| b |
| a |
| b |
| a |
| b |
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| C1 | C2 | |||||||||
| x | 2 |
|
4 | 3 | ||||||
| y | 0 |
|
4 | -2
| ||||||
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| 線段s與線段s1的關系 | m、r的取值或表達式 |
| s所在直線平行于s1所在直線 | |
| s所在直線平分線段s1 |
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)
的圖象過坐標原點O,且在點
處的切線的斜率是
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)求
在區(qū)間
上的最大值;
(Ⅲ)對任意給定的正實數(shù)
,曲線
上是否存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上?說明理由.
【解析】第一問當
時,
,則
。
依題意得:
,即
解得
第二問當
時,
,令
得
,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當
時,
,則
。
依題意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①當
時,
,令
得![]()
當
變化時,
的變化情況如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
極小值 |
單調遞增 |
極大值 |
|
又
,
,
。∴
在
上的最大值為2.
②當
時,
.當
時,
,
最大值為0;
當
時,
在
上單調遞增。∴
在
最大值為
。
綜上,當
時,即
時,
在區(qū)間
上的最大值為2;
當
時,即
時,
在區(qū)間
上的最大值為
。
(Ⅲ)假設曲線
上存在兩點P、Q滿足題設要求,則點P、Q只能在
軸兩側。
不妨設
,則
,顯然![]()
∵
是以O為直角頂點的直角三角形,∴![]()
即
(*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若
,則
代入(*)式得:![]()
即
,而此方程無解,因此
。此時
,
代入(*)式得:
即
(**)
令
,則![]()
∴
在
上單調遞增, ∵
∴
,∴
的取值范圍是
。
∴對于
,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù)
,曲線
上存在兩點P、Q,使得
是以O為直角頂點的直角三角形,且此三角形斜邊中點在
軸上
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省莆田一中高二(下)第一學段考試數(shù)學試卷(選修2-1、2-2)(解析版) 題型:填空題
| C1 | C2 | |||
| x | 2 | | 4 | 3 |
| y | 0 | | 4 | -2 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com