如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且
底面ABCD,
,E是PA的中點(diǎn).![]()
(1)求證:平面
平面EBD;
(2)若PA=AB=2,求三棱錐P-EBD的高.
(1)證明過程詳見解析;(2)
.
解析試題分析:本題主要以四棱錐為幾何背景考查線面垂直、面面垂直、等體積法等基礎(chǔ)知識,考查空間想象能力、邏輯推理能力、計(jì)算能力.第一問,利用線面垂直的性質(zhì)得PA⊥BD,又因?yàn)锽D⊥PC,利用線面垂直的判定得到BD⊥平面PAC,最后利用面面垂直的判定得到平面PAC⊥平面EBD;第二問,由于BD⊥平面PAC,所以BD⊥AC,所以ABCD是菱形,可求出
的面積,由于BD⊥平面PAC,所以BD⊥OE,所以可求出
的面積,用等體積法求出三棱錐P-EBD的體積,通過列出的等式解出高的值.
試題解析:(1)因?yàn)?i>PA⊥平面ABCD,所以PA⊥BD.
又BD⊥PC,所以BD⊥平面PAC,
因?yàn)?i>BDÌ平面EBD,所以平面PAC⊥平面EBD. 5分![]()
(2)由(1)可知,BD⊥AC,所以ABCD是菱形,∠BAD=120°.
所以
. 7分
設(shè)AC∩BD=O,連結(jié)OE,則(1)可知,BD⊥OE.
所以
. 9分
設(shè)三棱錐P-EBD的高為h,則
,即
,解得
. 12分
考點(diǎn):線面垂直、面面垂直、等體積法.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,
平面ABCD,AD//BC,
AC,![]()
,點(diǎn)M在線段PD上.![]()
(1)求證:
平面PAC;
(2)若二面角M-AC-D的大小為
,試確定點(diǎn)M的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱
是直棱柱,
.點(diǎn)
分別為
和
的中點(diǎn). ![]()
(1)求證:
平面
;
(2)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方體
中,已知
為棱
上的動(dòng)點(diǎn).![]()
(1)求證:
;
(2)當(dāng)
為棱
的中點(diǎn)時(shí),求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱
中,
,頂點(diǎn)
在底面
上的射影恰為點(diǎn)
,
.
(1)證明:平面
平面
;
(2 )若點(diǎn)
為
的中點(diǎn),求出二面角
的余弦值.![]()
(1)證明:平面
平面
;
(2)若點(diǎn)
為
的中點(diǎn),求出二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖在四棱錐
中,底面
是菱形,
,平面
平面
,
,
為
的中點(diǎn),
是棱
上一點(diǎn),且
.![]()
(1)求證:
平面
;
(2)證明:
∥平面
;
(3)求二面角
的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
在平面
內(nèi),
,
,P為平面
外一個(gè)動(dòng)點(diǎn),且PC=
,![]()
![]()
(1)問當(dāng)PA的長為多少時(shí),![]()
(2)當(dāng)
的面積取得最大值時(shí),求直線BC與平面PAB所成角的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD,底面ABCD是
,邊長為
的菱形,又
,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).![]()
(1)證明:DN//平面PMB;
(2)證明:平面PMB
平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分別為DC、BC的中點(diǎn).![]()
(1)求證:平面FGH∥平面BDE;
(2)求證:平面ACF⊥平面BDE.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com