【題目】已知函數
且
.
(I)若
,求函數
的單調區間;(其中
是自然對數的底數)
(II)設函數
,當
時,曲線
與
有兩個交點,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】某大學餐飲中心為了解新生的飲食習慣,在全校一年級學生中進行了抽樣調查,調查結果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合 計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合 計 | 70 | 30 | 100 |
⑴根據表中數據,問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差
異”;
⑵已知在被調查的北方學生中有5名數學系的學生,其中2名喜歡甜品,現在從這5名學生中隨機
抽取3人,求至多有1人喜歡甜品的概率.
| 0.100 | 0.050 | 0.010 |
| 2.706 | 3.841 | 6.635 |
附:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據統計,截至2016年底全國微信注冊用戶數量已經突破9.27億.為調查大學生這個微信用戶群體中每人擁有微信群的數量,現從某市大學生中隨機抽取100位同學進行了抽樣調查,結果如下:
![]()
(1)求
,
,
的值及樣本中微信群個數超過12的概率;
(2)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數超過12的概率;
(3)以(1)中的頻率作為概率,若從全市大學生中隨機抽取3人,記
表示抽到的是微信群個數超過12的人數,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為
.第一次抽獎,若未中獎,則抽獎結束.若中獎,則通過拋一枚質地均勻的硬幣,決定是否繼續進行第二次抽獎,規定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續三次抽獎,每次中獎率均為
,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金
(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,過橢圓
右焦點的直線
交橢圓
于
兩點,
為
的中點,且直線
的斜率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設另一直線
與橢圓
交于
兩點,原點
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系
中,已知點
,曲線
的參數方程為
.以原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(Ⅰ)判斷點
與直線
的位置關系并說明理由;
(Ⅱ)設直線
與曲線
的兩個交點分別為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017唐山模擬】如圖,ABCDA1B1C1D1為正方體,連接BD,AC1,B1D1, CD1,B1C,現有以下幾個結論:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1與底面ABCD所成角的正切值是;④CB1與BD為異面直線,其中所有正確結論的序號為________.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于下列命題: ①若函數y=2x的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數y=
的定義域是{x|x>2},則它的值域是{y|y≤
};
③若函數y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|﹣2≤x≤2};
④若函數y=log2x的值域是{y|y≤3},則它的定義域是{x|0<x≤8}.
其中不正確的命題的序號是 . (注:把你認為不正確的命題的序號都填上)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com