【題目】函數(shù)f(x)=
+lg(x﹣1)的定義域是( )
A.(1,+∞)
B.(﹣∞,2)
C.(2,+∞)
D.(1,2]
【答案】D
【解析】解:函數(shù)f(x)=
+lg(x﹣1),
可得2﹣x≥0,且x﹣1>0,
即有x≤2且x>1,
即為1<x≤2,
則定義域?yàn)椋?,2].
故選:D.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)的定義域及其求法,掌握求函數(shù)的定義域時(shí),一般遵循以下原則:①
是整式時(shí),定義域是全體實(shí)數(shù);②
是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③
是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在
中,
,
,
,
為
的中點(diǎn),將
沿
折起,使
間的距離為
,則點(diǎn)
到平面
的距離為( )
![]()
A.
B.
C. 1 D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列幾個(gè)命題正確的個(gè)數(shù)是( )
①若方程
有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則
;
②函數(shù)
是偶函數(shù),但不是奇函數(shù);
③設(shè)函數(shù)
的定義域?yàn)?/span>
,則函數(shù)
與函數(shù)
圖像關(guān)于
軸對(duì)稱;
④一條曲線
和直線
的公共點(diǎn)個(gè)數(shù)是
,則
的值不可能是1。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四面體P﹣ABC中,點(diǎn)M是棱PC的中點(diǎn),點(diǎn)N是線段AB上一動(dòng)點(diǎn),且
,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng)
時(shí),則cosα的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的中點(diǎn)為直線
和
的交點(diǎn),正方形一邊所在直線的方程為
,求其他三邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)的高鐵技術(shù)發(fā)展迅速,鐵道部門計(jì)劃在
兩城市之間開(kāi)通高速列車,假設(shè)列車在試運(yùn)行期間,每天在
兩個(gè)時(shí)間段內(nèi)各發(fā)一趟由
城開(kāi)往
城的列車(兩車發(fā)車情況互不影響),
城發(fā)車時(shí)間及概率如下表所示:
發(fā)車 時(shí)間 |
|
|
|
|
|
|
概率 |
|
|
|
|
|
|
若甲、乙兩位旅客打算從
城到
城,他們到達(dá)
火車站的時(shí)間分別是周六的
和周日的
(只考慮候車時(shí)間,不考慮其他因素).
(1)設(shè)乙候車所需時(shí)間為隨機(jī)變量
(單位:分鐘),求
的分布列和數(shù)學(xué)期望
;
(2)求甲、乙兩人候車時(shí)間相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:x+2y-2=0,試求:
(1)點(diǎn)P(-2,-1)關(guān)于直線l的對(duì)稱點(diǎn)坐標(biāo);
(2)直線
關(guān)于直線l對(duì)稱的直線l2的方程;
(3)直線l關(guān)于點(diǎn)(1,1)對(duì)稱的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線
﹣
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , 過(guò)右焦點(diǎn)F2且與x軸垂直的直線與雙曲線兩條漸近線分別交于A,B兩點(diǎn),若△ABF1為等腰直角三角形,且|AB|=4
,P(x,y)在雙曲線上,M(
,
),則|PM|+|PF2|的最小值為( )
A.
﹣1
B.2
C.2
﹣2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(
+3x2)n的展開(kāi)式中,各項(xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為32.
(1)求n;
(2)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com