已知
的頂點
在橢圓
上,
在直線
上,且
.
(1)當
邊通過坐標原點
時,求
的長及
的面積;
(2)當
,且斜邊
的長最大時,求
所在直線的方程.
(1)
,
;(2)
。
解析試題分析:(1)由于直線
過原點,故直線方程是已知的,可直接求出
兩點的坐標,求出線段
的長,及
邊上的高和面積;(2)設直線
方程為
,把方程
與橢圓方程聯立,消去
,得出關于
的二次方程,
兩點的橫坐標
就是這個方程的兩解,故必須滿足
,而線段
的長
,線段
的長
等于平行線
與
間的距離,再利用勾股定理求出
,這時
一定是
的函數,利用函數知識就可以求得結論。
試題解析:(1)因為
,且
過點
,所以
所在直線方程為
。
設
兩點的坐標分別為
,
由
得
。
∴![]()
。
又因為
邊上的高
等于原點到直線
的距離,
所以
。
(2)設直線
的方程為
,
由
得
。
因為
在橢圓上,所以
。
設
兩點的坐標分別為
,
則
,
所以
。
又因為
的長等于點
到直線
的距離,即
,
所以
。
所以當
時,
邊最長(這時
),
此時
所在直線方程為
。
考點:直線和橢圓相交,弦長問題。
科目:高中數學 來源: 題型:解答題
給定橢圓
,稱圓心在坐標原點O,半徑為
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是
.
(1)若橢圓C上一動點
滿足
,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點
作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為
,求P點的坐標;
(3)已知
,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點
的直線的最短距離
.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的左、右焦點分別是
、
,
是橢圓右準線上的一點,線段
的垂直平分線過點
.又直線
:
按向量
平移后的直線是
,直線
:
按向量
平移后的直線是
(其中
)。
(1) 求橢圓的離心率
的取值范圍。
(2)當離心率
最小且
時,求橢圓的方程。
(3)若直線
與
相交于(2)中所求得的橢圓內的一點
,且
與這個橢圓交于
、
兩點,
與這個橢圓交于
、
兩點。求四邊形ABCD面積
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(1)已知定點
、
,動點N滿足
(O為坐標原點),
,
,
,求點P的軌跡方程.![]()
(2)如圖,已知橢圓
的上、下頂點分別為
,點
在橢圓上,且異于點
,直線
與直線
分別交于點
,![]()
(ⅰ)設直線
的斜率分別為
、
,求證:
為定值;
(ⅱ)當點
運動時,以
為直徑的圓是否經過定點?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線
上有一點
,到焦點
的距離為
.
(Ⅰ)求
及
的值.
(Ⅱ)如圖,設直線
與拋物線交于兩點
,且
,過弦
的中點
作垂直于
軸的直線與拋物線交于點
,連接
.試判斷
的面積是否為定值?若是,求出定值;否則,請說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系
中,已知橢圓
經過點![]()
,橢圓的離心率
.![]()
(1)求橢圓
的方程;
(2)過點
作兩直線與橢圓
分別交于相異兩點
、
.若
的平分線與
軸平行, 試探究直線
的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面內一動點P到點F(1,0)的距離與點P到y軸的距離的差等于1.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F作兩條斜率存在且互相垂直的直線l1,l2,設l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求
的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com