已知二次函數(shù)
,關(guān)于x的不等式
的解集為
,其中m為非零常數(shù).設(shè)
.
(1)求a的值;
(2)
如何取值時(shí),函數(shù)
存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量
(單位:千克)與銷售價(jià)格
(單位:元/千克)滿足關(guān)系式
其中
為常數(shù)。己知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克。
(1)求
的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格
的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)函數(shù)
在區(qū)間
上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)當(dāng)
時(shí),
恒成立,求整數(shù)
的最大值;
(3)試證明:
(
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
、
為常數(shù)),在
時(shí)取得極值.
(1)求實(shí)數(shù)
的取值范圍;
(2)當(dāng)
時(shí),關(guān)于
的方程
有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(3)數(shù)列
滿足
(
且
),
,數(shù)列
的前
項(xiàng)和為
,
求證:
(
,
是自然對(duì)數(shù)的底).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
據(jù)統(tǒng)計(jì)某種汽車的最高車速為120千米∕時(shí),在勻速行駛時(shí)每小時(shí)的耗油量
(升)與行駛速度
(千米∕時(shí))之間有如下函數(shù)關(guān)系:
。已知甲、乙兩地相距100千米。
(1)若汽車以40千米∕時(shí)的速度勻速行駛,則從甲地到乙地需耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(I)若
,是否存在a,b
R,y=f(x)為偶函數(shù).如果存在.請(qǐng)舉例并證明你的結(jié)論,如果不存在,請(qǐng)說明理由;
〔II)若a=2,b=1.求函數(shù)
在R上的單調(diào)區(qū)間;
(III )對(duì)于給定的實(shí)數(shù)
成立.求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
,函數(shù)
.
(1)若
,求函數(shù)
在區(qū)間
上的最大值;
(2)若
,寫出函數(shù)
的單調(diào)區(qū)間(不必證明);
(3)若存在
,使得關(guān)于
的方程
有三個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(其中
為常數(shù)且
)在
處取得極值.
(I) 當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(II) 若
在
上的最大值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙二人平時(shí)跑步路程與時(shí)間的關(guān)系以及百米賽跑路程和時(shí)間的關(guān)
系分別如圖①、②所示.問:
(1)甲、乙二人平時(shí)跑步哪一個(gè)跑得快?
(2)甲、乙二人百米賽跑,快到終點(diǎn)時(shí),誰跑得快(設(shè)Δs為s的增量)?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com