已知橢圓
上的點(diǎn)
到橢圓一個(gè)焦點(diǎn)的距離為
,則
到另一焦點(diǎn)的
距離為( )
A.
B.
C.
D.![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| x2 |
| 9 |
| y2 |
| 4 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省五校2012屆高三第一次聯(lián)考數(shù)學(xué)文科試題 題型:044
已知橢圓
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且|PT|的最小值不小于
(a-c).
(1)證明:橢圓上的點(diǎn)到F2的最短距離為a-c;
(2)求橢圓的離心率e的取值范圍;
(3)設(shè)橢圓的短半軸長為1,圓F2與x軸的右交點(diǎn)為Q,過點(diǎn)Q作斜率為k(k>0)的直線l與橢圓相交于A、B兩點(diǎn),若OA⊥OB,求直線l被圓F2截得的弦長S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年北京市東城區(qū)高三上學(xué)期期末統(tǒng)一檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓![]()
上的點(diǎn)到其兩焦點(diǎn)距離之和為
,且過點(diǎn)
.
(Ⅰ)求橢圓方程;
(Ⅱ)
為坐標(biāo)原點(diǎn),斜率為
的直線過橢圓的右焦點(diǎn),且與橢圓交于點(diǎn)
,
,若
,求△
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆福建省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
.(本小題滿分14分)已知橢圓
上的點(diǎn)
到兩個(gè)焦點(diǎn)的距離之和為
。
(Ⅰ)求橢圓
的方程;
(Ⅱ)若直線
與橢圓
交于兩點(diǎn)
,且
(
為坐標(biāo)原點(diǎn)),求
的最大值和最小值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com