如圖,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.![]()
(1)求棱AA1與BC所成的角的大小;
(2)在棱B1C1上確定一點P,使二面角P-AB-A1的平面角的余弦值為
.
科目:高中數學 來源: 題型:解答題
如圖,在
中,
,斜邊
.
可以通過
以直線
為軸旋轉得到,且二面角
是直二面角.動點
在斜邊
上.![]()
(1)求證:平面
平面
;
(2)求
與平面
所成角的最大角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,四棱錐E
ABCD中,EA=EB,AB∥CD,AB⊥BC,AB=2CD.![]()
(1)求證:AB⊥ED;
(2)線段EA上是否存在點F,使DF∥平面BCE?若存在,求出
;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分別是AC,AD上的動點,且
=λ(0<λ<1).![]()
(1)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD..
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在三棱錐SABC中,SA⊥平面ABC,SA=AB=AC=
BC,點D是BC邊的中點,點E是線段AD上一點,且AE=3DE,點M是線段SD上一點,
(1)求證:BC⊥AM;
(2)若AM⊥平面SBC,求證:EM∥平面ABS.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,D是BC的中點.![]()
(1)若E為A1C1的中點,求證:DE∥平面ABB1A1;
(2)若E為A1C1上一點,且A1B∥平面B1DE,求
的值..
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四邊形ABCD為正方形,在四邊形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=
PD.![]()
(1)證明:PQ⊥平面DCQ;
(2)CP上是否存在一點R,使QR∥平面ABCD,若存在,請求出R的位置,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com