【題目】一對夫婦為了給他們的獨生孩子支付將來上大學的費用,從孩子一周歲生日開始,每年到銀行儲蓄
元一年定期,若年利率為
保持不變,且每年到期時存款(含利息)自動轉為新的一年定期,當孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數為
![]()
A.
B.![]()
C.
D.![]()
科目:高中數學 來源: 題型:
【題目】已知直線l:
橢圓C:
,
分別為橢圓的左右焦點.
(1)當直線l過右焦點
時,求C的標準方程;
(2)設直線l與橢圓C交于A,B兩點,O為坐標原點,若∠AOB是鈍角,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的離心率為
,焦距為
.
(1)求
的方程;
(2)若斜率為
的直線
與橢圓
交于
,
兩點(點
,
均在第一象限),
為坐標原點.
①證明:直線
的斜率依次成等比數列.
②若
與
關于
軸對稱,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三梭柱ABC-A1B1C1中,AC=BC,E,F分別為AB,A1B1的中點.
![]()
(1)求證:AF∥平面B1CE;
(2)若A1B1⊥
,求證:平面B1CE⊥平面ABC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某企業生產的某種產品中抽取100件,測量這些產品的一項質量指標值.經數據處理后得到該樣本的頻率分布直方圖,其中質量指標值不大于1.50的莖葉圖如圖所示,以這100件產品的質量指標值在各區間內的頻率代替相應區間的概率.
![]()
(1)求圖中
,
,
的值;
(2)估計這種產品質量指標值的平均數及方差(說明:①同一組中的數據用該組區間的中點值作代表;②方差的計算只需列式正確);
(3)根據以上抽樣調查數據,能否認為該企業生產的這種產品符合“質量指標值不低于1.50的產品至少要占全部產品的
”的規定?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在10件產品中,有3件一等品,4件二等品,3件三等品。從這10件產品中任取3件,求:
(I) 取出的3件產品中一等品件數X的分布列和數學期望;
(II) 取出的3件產品中一等品件數多于二等品件數的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為
,觀影人數記為
,其函數圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調整方案,圖(2)、圖(3)中的實線分別為調整后
與
的函數圖象.
![]()
給出下列四種說法:
①圖(2)對應的方案是:提高票價,并提高成本;
②圖(2)對應的方案是:保持票價不變,并降低成本;
③圖(3)對應的方案是:提高票價,并保持成本不變;
④圖(3)對應的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】改編自中國神話故事的動畫電影《哪吒之魔童降世》自7月26日首映,在不到一個月的時間,票房收入就超過了38億元,創造了中國動畫電影的神話.小明和同學相約去電影院觀看《哪吒之魔童降世》,影院的三個放映廳分別在7:30,8:00,8:30開始放映,小明和同學大約在7:40至8:30之間到達影院,且他們到達影院的時間是隨機的,那么他們到達后等待的時間不超過10分鐘的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com