【題目】已知甲、乙兩車間的月產值在2017年1月份相同,甲車間以后每個月比前一個月增加相同的產值,乙車間以后每個月比前一個月增加產值的百分比相同.到2017年7月份發現兩車間的月產值又相同,比較甲、乙兩個車間2017年4月份月產值的大小,則( )
A. 甲車間大于乙車間 B. 甲車間等于乙車間
C. 甲車間小于乙車間 D. 不確定
科目:高中數學 來源: 題型:
【題目】在下列命題中:
①存在一個平面與正方體的12條棱所成的角都相等;
②存在一個平面與正方體的6個面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個面所成的角都相等.
其中真命題的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班50位學生期中考試數學成績的頻率直方分布圖如圖所示,其中成績分組區間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].![]()
(1)求圖中x的值;
(2)從成績不低于80分的學生中隨機選取2人,該2人中成績在90分以上(含90分)的人數記為ξ,求ξ的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角坐標
中,設橢圓
:
的左右兩個焦點分別為
,
,過右焦點
且與
軸垂直的直線
與橢圓
相交,其中一個交點為
.
![]()
(1)求橢圓
的方程;
(2)已知
,
經過點
且斜率為
,直線
與橢圓
有兩個不同的
和
交點,請問是否存在常數
,使得向量
與
共線?如果存在,求出
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4﹣4:坐標系與參數方程
在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l上兩點M,N的極坐標分別為(2,0),(
),圓C的參數方程
(θ為參數).
(Ⅰ)設P為線段MN的中點,求直線OP的平面直角坐標方程;
(Ⅱ)判斷直線l與圓C的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了變廢為寶,節約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經測算該項目月處理成本
(元)與月處理量
(噸)之間的函數關系可以近似地表示為:
,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.
(1)當
時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合.對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 | 1 | ﹣0.8 |
0.1 | ﹣0.3 | ﹣1 |
(2)設數表A∈S(2,3)形如
1 | 1 | c |
a | b | ﹣1 |
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點F,FE∥CD,交PD于點E. ![]()
(1)證明:CF⊥平面ADF;
(2)求二面角D﹣AF﹣E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinxcos(x﹣
)+cos2x﹣
.
(1)求函數f(x)的最大值,并寫出f(x)取最大值x時的取值集合;
(2)若f(x0)=
,x0∈[
,
],求cos2x0的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com