【題目】已知圓C的圓心為(1,1),直線
與圓C相切.
(1)求圓C的標準方程;
(2)若直線過點(2,3),且被圓C所截得的弦長為2,求直線的方程.
科目:高中數學 來源: 題型:
【題目】已知橢圓
的右焦點為
,點
為橢圓
上的動點,若
的最大值和最小值分別為
和
.
(I)求橢圓
的方程
(Ⅱ)設不過原點的直線
與橢圓
交于
兩點,若直線
的斜率依次成等比數列,求
面積的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系
中,曲線
過點
,其參數方程為
(
為參數).以坐標原點
為極點,
軸的非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求
的普通方程和
的直角坐標方程;
(2)若
與
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在直角坐標系
中,曲線C由以原點為圓心,半徑為2的半圓和中心在原點,焦點在x軸上的半橢圓構成,以坐標原點
為極點,x軸正半軸為極軸建立極坐標系.
![]()
(1)寫出曲線C的極坐標方程;
(2)已知射線
與曲線C交于點M,點N為曲線C上的動點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰,某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質量分別在
,
,
,
,
,
(單位:克)中,其頻率分布直方圖如圖所示.
![]()
(1)按分層抽樣的方法從質量落在
,
的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質量均小于2000克的概率;
(2)以各組數據的中間數代表這組數據的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元/千克收購;
B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種零件,每個零件的成本為100元,出廠單價定為160元,該廠為了鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂一個,所訂購的全部零件的出廠單價就降低0.05元,但出廠單價不能低于130元.
(1)某零售商若一次訂購該零件300個,求該零售商所訂購零件的出廠單價;
(2)若某零售商一次訂購x個(x∈N*),零件的實際出廠單價為y元,試求y=f(x)的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設圓M過點P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,
,點
在橢圓
上.
(
)求橢圓
的標準方程.
(
)是否存在斜率為
的直線
,使得當直線
與橢圓
有兩個不同交點
,
時,能在直線
上找到一點
,在橢圓
上找到一點
,滿足
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com