【題目】已知下圖中,四邊形 ABCD是等腰梯形,
,
,O、Q分別為線段AB、CD的中點,OQ與EF的交點為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得
,連結AD、BC,得一幾何體如圖所示.
![]()
(Ⅰ)證明:平面ABCD
平面ABFE;
(Ⅱ)若上圖中,
,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.
【答案】(1)見解析;(2)
.
【解析】試題分析:(1)先根據(jù)
,
得
⊥平面
,故
,結合勾股定理
,由線面垂直判定定理可得
平面
,由面面垂直判定定理可得結論;(2)以
為原點,
所在的直線為
軸建立空間直角坐標系
,可求得面
的一個法向量
,面
的一個法向量
,求出向量夾角即可.
試題解析: (1)證明:在圖中,四邊形
為等腰梯形,
分別為線段
的中點,
∴
為等腰梯形
的對稱軸,又
//
,
∴
、
,①
在圖中,∵
,∴![]()
由①及
,得
⊥平面
,∴
,
又
,∴
平面
,
又
平面
,∴平面
平面
;
![]()
(2)在圖中,由
,
,易得
,
,
以
為原點,
所在的直線為
軸建立空間直角坐標系
,如圖所示,
![]()
則
、
、![]()
得
, ![]()
設
是平面
的一個法向量,
則
,得
,
取
,得![]()
同理可得平面
的一個法向量![]()
設所求銳二面角的平面角為
,
則
=![]()
所以平面ADE與平面
所成銳二面角的余弦值為
.
科目:高中數(shù)學 來源: 題型:
【題目】設關于
的一元二次方程
.
(1)若
是從0,1,2,3四個數(shù)中任取的一個數(shù),
是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若
時從區(qū)間
上任取的一個數(shù),
是從區(qū)間
上任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)
在區(qū)間
上,
,
,
,
,
,
均可為一個三角形的三邊長,則稱函數(shù)
為“三角形函數(shù)”.已知函數(shù)
在區(qū)間
上是“三角形函數(shù)”,則實數(shù)
的取值范圍為( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
與拋物線
共焦點
,拋物線上的點M到y軸的距離等于
,且橢圓與拋物線的交點Q滿足
.
(I)求拋物線的方程和橢圓的方程;
(II)過拋物線上的點
作拋物線的切線
交橢圓于
、
兩點,求此切線在x軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某舉重運動隊為了解隊員的體重分布情況,從50名隊員中抽取10名作調查.抽取時現(xiàn)將全體隊員隨機按1~50編號,并按編號順序平均分成10組,每組抽一名,且各組內抽取的編號依次增加5進行系統(tǒng)抽樣.
![]()
(1)若第5組抽出的號碼為22,寫出所有被抽取出來的編號;
(2)分別統(tǒng)計被抽取的10名隊員的體重(單位:公斤),獲得如圖所示的體重數(shù)據(jù)的莖葉圖,根據(jù)莖葉圖求該樣本的平均數(shù)和中位數(shù);
(3)在題(2)的莖葉圖中,從題中不輕于73公斤的隊員中隨機抽取2名隊員的體重數(shù)據(jù),求體重為81公斤的隊員被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖所示.
![]()
(1)求直方圖中
的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量在
,
,
的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在
的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系
中,已知曲線
(
為參數(shù)),在以原點
為極點,
軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為:
.
(Ⅰ)求曲線
的普通方程和直線的直角坐標方程;
(Ⅱ)過點
且與直線平行的直線
交
于
,
兩點,求點
到
,
兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
的離心率為
,順次連接橢圓
的四個頂點得到的四邊形的面積為16.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過橢圓
的頂點
的直線
交橢圓于另一點
,交
軸于點
,若
、
、
成等比數(shù)列,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的兩個焦點分別為
,短軸的兩個端點分別為
.
(Ⅰ)若
為等邊三角形,求橢圓
的方程;
(Ⅱ)若橢圓
的短軸長為
,過點
的直線
與橢圓
相交于
兩點,且
,求直線
的方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com