【題目】已知正項等比數(shù)列{an}滿足a7=a6+2a5 , 若存在兩項am , an使得
,則
的最小值為( )
A.![]()
B.![]()
C.![]()
D.不存在
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時,f(x)>1,且對任意的x,y
,有
,
.
(1)求
的值;
(2)求證:對任意x
,都有f(x)>0;
(3)解不等式f(3
2x)>4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程是
(t為參數(shù)),以射線ox為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是
+ρ2sin2θ=1.
(1)求曲線C的直角坐標(biāo)方程;
(2)求直線l與曲線C相交所得的弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①在同一坐標(biāo)系中,
與
的圖象關(guān)于
軸對稱;
②
是奇函數(shù);
③
的圖象關(guān)于
成中心對稱;
④
的最大值為
;
⑤
的單調(diào)增區(qū)間:
。
以上五個判斷正確有____________________(寫上所有正確判斷的序號)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在天
內(nèi)每克的銷售價格
(元)與時間
的函數(shù)圖象是如圖所示的兩條線段
(不包含
兩點);該商品在 30 天內(nèi)日銷售量
(克)與時間
(天)之間的函數(shù)關(guān)系如下表所示:
第 | 5 | 15 | 20 | 30 |
銷售量 | 35 | 25 | 20 | 10 |
![]()
(1)根據(jù)提供的圖象,寫出該商品每克銷售的價格
(元)與時間
的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)寫出一個反映日銷售量
隨時間
變化的函數(shù)關(guān)系式;
(3)在(2)的基礎(chǔ)上求該商品的日銷售金額的最大值,并求出對應(yīng)的
值.
(注:日銷售金額=每克的銷售價格×日銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
、
是橢圓
的右頂點與上頂點,直線
與橢圓相交于
、
兩點.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)當(dāng)四邊形
面積取最大值時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,直線
過定點
.
(Ⅰ)若
與圓
相切,求
的方程;
(Ⅱ)若
與圓
相交于
兩點,求
的面積的最大值,并求此時直線
的方程.(其中點C是圓C的圓心)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,-2),橢圓E:
(a>b>0)的離心率為
,F是橢圓E的右焦點,直線AF的斜率為
,O為坐標(biāo)原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱
,側(cè)面
.
(Ⅰ)若
分別是
的中點,求證:
;
(Ⅱ)若三棱柱
的各棱長均為2,側(cè)棱
與底面
所成的角為
,問在線段
上是否存在一點
,使得平面
?若存在,求
與
的比值,若不存在,說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com