【題目】已知
的內(nèi)角
所對的邊分別為
,_________,且
.現(xiàn)從:①
,②
,③
這三個條件中任選一個,補充在以上問題中,并判斷這樣的
是否存在,若存在,求
的面積
_________;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面
平面
,
,四邊形
為平行四邊形,
,
為線段
的中點,點
滿足
.
![]()
(Ⅰ)求證:直線
平面
;
(Ⅱ)求證:平面
平面
;
(Ⅲ)若平面
平面
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且曲線y=f(x)在其與y軸的交點處的切線記為l1,曲線y=g(x)在其與x軸的交點處的切線記為l2,且l1∥l2.
(1)求l1,l2之間的距離;
(2)若存在x使不等式
成立,求實數(shù)m的取值范圍;
(3)對于函數(shù)f(x)和g(x)的公共定義域中的任意實數(shù)x0,稱|f(x0)-g(x0)|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)f(x)和g(x)在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱
中,
,底面三邊長分別為3,5,7,
是上底面
所在平面內(nèi)的動點,若三棱錐
的外接球表面積為
,則滿足題意的動點
的軌跡對應(yīng)圖形的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)
為曲線
上位于第一,二象限的兩個動點,且
,射線
交曲線
分別于
,求
面積的最小值,并求此時四邊形
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:
![]()
(1)求頻率直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學(xué)生人數(shù);
(3)從成績在[50,70)的學(xué)生中人選2人,求這2人的成績都在[60,70)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知p:函數(shù)f(x)在R上是增函數(shù),f(m2)<f(m+2)成立;q:方程
1(m∈R)表示雙曲線.
(1)若p為真命題,求m的取值范圍;
(2)若p∨q為真,p∧q為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點為極點,
軸為非負(fù)半軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求直線
的直角坐標(biāo)方程和曲線
的普通方程;
(2)求直線
與曲線
交于兩點
,線段
的中點的橫坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列
中,
,
,
分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.
第一列 | 第二列 | 第三列 | |
第一行 | 5 | 8 | 2 |
第二行 | 4 | 3 | 12 |
第三行 | 16 | 6 | 9 |
(1)請選擇一個可能的
組合,并求數(shù)列
的通項公式;
(2)記(1)中您選擇的
的前
項和為
,判斷是否存在正整數(shù)
,使得
,
,
成等比數(shù)列,若有,請求出
的值;若沒有,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com