【題目】已知等差數(shù)列
的前n項(xiàng)和為
,
,
,數(shù)列
滿足:
,
,
,數(shù)列
的前n項(xiàng)和為![]()
(1)求數(shù)列
的通項(xiàng)公式及前n項(xiàng)和;
(2)求數(shù)列
的通項(xiàng)公式及前n項(xiàng)和;
(3)記集合
,若M的子集個(gè)數(shù)為16,求實(shí)數(shù)
的取值范圍.
【答案】(1)
,
(2)
(3)![]()
【解析】試題分析:
利用等差數(shù)列的通項(xiàng)公式和前
項(xiàng)和公式即可得出,
先得到
,再利用累乘法,得到數(shù)列
的通項(xiàng)公式,再利用錯(cuò)位相減法求出前
項(xiàng)和公式![]()
根據(jù)函數(shù)的
的單調(diào)性,得到不等式
繼而求實(shí)數(shù)
的取值范圍
解析:(1)設(shè)數(shù)列
的公差為d,由題意知:
解得![]()
,
(2)由題意得: ![]()
當(dāng)
時(shí)![]()
又
也滿足上式,故![]()
故
——①
——②
①-②得: ![]()
=![]()
(3)由(1)(2)知:
,令![]()
則
,
,
,
, ![]()
![]()
當(dāng)
時(shí)
, ![]()
集合M的子集個(gè)數(shù)為16
中的元素個(gè)數(shù)為4
的解的個(gè)數(shù)為4
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,
是
的導(dǎo)函數(shù).
(Ⅰ)求
的極值;
(Ⅱ)若
在
時(shí)恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m對(duì)一切實(shí)數(shù)x均成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是正四面體的平面展開(kāi)圖,G,H,M,N分別為DE,BE,EF,EC的中點(diǎn),在這個(gè)正四面體中,
①GH與EF平行;②BD與MN為異面直線;③GH與MN成60°角;④DE與MN垂直.以上四個(gè)命題中,正確命題的序號(hào)是 . ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在體積為72的直三棱柱ABC﹣A1B1C1中,AB=3,AC=4,AA1=12. ![]()
(1)求角∠BAC的大小;
(2)若該三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,求球O的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面是邊長(zhǎng)為
的正方形,AA1=3,點(diǎn)F在棱B1B上運(yùn)動(dòng). ![]()
(1)若三棱錐B1﹣A1D1F的體積為
時(shí),求異面直線AD與D1F所成的角
(2)求異面直線AC與D1F所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1+kx),其中a>0且a≠1. (Ⅰ)當(dāng)k=﹣2時(shí),求函數(shù)h(x)=f(x)+g(x)的定義域;
(Ⅱ)若函數(shù)H(x)=f(x)﹣g(x)是奇函數(shù)(不為常函數(shù)),求實(shí)數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,
.
(1) 關(guān)于
的方程
在區(qū)間
上有解,求
的取值范圍;
(2) 當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形
,直角梯形
,直角梯形
所在平面兩兩垂直,
,且
,
.
![]()
(1)求證:
四點(diǎn)共面;
(2)求二面角
的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com