【題目】如圖,在Rt
中,
,點
、
分別在線段
、
上,且
,將
沿
折起到
的位置,使得二面角
的大小為
.
(1)求證:
;
(2)當點
為線段
的靠近
點的三等分點時,求
與平面
所成角
的正弦值.
![]()
【答案】(1)見解析(2)
【解析】試題分析:(1)由等腰三角形的性質可得
,
,翻折后垂直關系沒變,仍有
,
平面
,從而得
; (2)
二面角
的平面角,由余弦定理得
,由勾股定理可得
,
兩兩垂直,以
為原點,
所在直線為
軸,
所在直線為
軸,建立空間直角坐標系,求出平面
的法向量與
的方向向量,利用空間向量夾角余弦公式可得結果.
試題解析:(1)
![]()
,翻折后垂直關系沒變,仍有
,![]()
.
(2)
,
二面角
的平面角,
,又
,由余弦定理得
,
,
,
兩兩垂直.
以
為原點,
所在直線為
軸,
所在直線為
軸,建立如圖直角坐標系.
![]()
則
![]()
設平面
的法向量![]()
由
可得![]()
.
故PC與平面PEF所成的角的正弦值為
.
【方法點晴】本題主要考查利用空間向量求線面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當?shù)目臻g直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線y=x+b與函數(shù)f(x)=ln x的圖象交于兩個不同的點A,B,其橫坐標分別為x1,x2,且x1<x2.
(1)求b的取值范圍;
(2)當x2≥2時,證明x1·
<2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
是拋物線
上的兩個點,點
的坐標為
,直線
的斜率為
.設拋物線
的焦點在直線
的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設C為W上一點,且
,過
兩點分別作W的切線,記兩切線的交點為
. 判斷四邊形
是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,過點
的直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
相交于
兩點.
(1)寫出曲線
的直角坐標方程和直線
的普通方程;
(2)若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,橢圓
的左、右焦點分別為
離心率為
,兩準線之間的距離為8,點
在橢圓
上,且位于第一象限,過點
作直線
的垂線
,過點
作直線
的垂線
.
(1)求橢圓
的標準方程;
(2)若直線
的交點
在橢圓
上,求點
的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
與直線
相切.
(1)若直線
與圓
交于
兩點,求
;
(2)設圓
與
軸的負半軸的交點為
,過點
作兩條斜率分別為
的直線交圓
于
兩點,且
,試證明直線
恒過一定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為10名學生的預賽成績,其中有三個數(shù)據模糊.
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則
(A)2號學生進入30秒跳繩決賽
(B)5號學生進入30秒跳繩決賽
(C)8號學生進入30秒跳繩決賽
(D)9號學生進入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標系.已知曲線C:ρsin2θ=2acos θ(a>0),過點P(-2,-4)的直線l的參數(shù)方程為
,直線l與曲線C分別交于M,N兩點.若|PM|,|MN|,|PN|成等比數(shù)列,則a的值為________.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com