(13分)(2011•天津)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點(diǎn),PO⊥平面ABCD,PO=2,M為PD中點(diǎn).![]()
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求直線AM與平面ABCD所成角的正切值.
(Ⅰ)(Ⅱ)見(jiàn)解析(Ⅲ)![]()
解析試題分析:(I)由O為AC中點(diǎn),M為PD中點(diǎn).結(jié)合平行四邊形的對(duì)角線性質(zhì),考慮連接BD,MO,則有PB∥MO,從而可證
(II)由∠ADC=45°,且AD=AC=1,易得AD⊥AC,PO⊥AD,根據(jù)線面垂直的判定定理可證
(III)取DO中點(diǎn)N,由PO⊥平面ABCD,可得MN⊥平面ABCD,從而可得∠MAN是直線AM與平面ABCD所成的角.在Rt△ANM中求解即可
解:(I)證明:連接BD,MO
在平行四邊形ABCD中,因?yàn)镺為AC的中點(diǎn),
所以O(shè)為BD的中點(diǎn),又M為PD的中點(diǎn),所以PB∥MO
因?yàn)镻B?平面ACM,MO?平面ACM
所以PB∥平面ACM
(II)證明:因?yàn)椤螦DC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC
又PO⊥平面ABCD,AD?平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC
(III)解:取DO中點(diǎn)N,連接MN,AN
因?yàn)镸為PD的中點(diǎn),所以MN∥PO,且MN=
PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD
所以∠MAN是直線AM與平面ABCD所成的角.
在Rt△DAO中,
,所以
,
∴
,![]()
在Rt△ANM中,
=
=![]()
即直線AM與平面ABCD所成的正切值為![]()
點(diǎn)評(píng):本題主要考查直線與平面平行、直線與平面垂直、直線與平面所成的角等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算能力、推理論證能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△ABC是邊長(zhǎng)為l的等邊三角形,D、E分別是AB、AC邊上的點(diǎn),AD = AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到三棱錐A-BCF,其中
.
(1)證明:DE∥平面BCF;
(2)證明:CF⊥平面ABF;
(3)當(dāng)
時(shí),求三棱錐F-DEG的體積V.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,正方形ABCD和矩形ABEF所在的平面互相垂直,M為AF的中點(diǎn),BN⊥CE.![]()
(1)求證:CF∥平面MBD;
(2)求證:CF⊥平面BDN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱
中,
.
為平行四邊形,
,
,
分別是
與
的中點(diǎn).![]()
(1)求證:
;
(2)求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,
為
上一點(diǎn),面
面
,四邊形
為矩形
,
,
.
(1)已知
,且
∥面
,求
的值;
(2)求證:
面
,并求點(diǎn)
到面
的距離.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐
中,
底面
,
,
為
的中點(diǎn),
為
的中點(diǎn),
,
.![]()
(1)求證:
平面
;
(2)求
與平面
成角的正弦值;
(3)設(shè)點(diǎn)
在線段
上,且
,
平面
,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線就和兩平面的交線平行.
請(qǐng)對(duì)上面定理加以證明,并說(shuō)出定理的名稱及作用.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com