科目:高中數學 來源:2010年普通高等學校招生全國統一考試、文科數學(北京卷) 題型:044
已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i={1,2,…,n}(n≥2)對于A=(a1,a2,…an),B=(b1,b2,…bn)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2||,…|an-bn|);A與B之間的距離為d(A,B)=
|a1-b1|
(Ⅰ)當n=5時,設A=(0,1,0,0,1),B=(1,1,1,0,0),求A-B,d(A,B);
(Ⅱ)證明:
A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅲ)證明:
A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個數中至少有一個是偶數
查看答案和解析>>
科目:高中數學 來源:2010-2011學年湖北省、鐘祥一中高三第二次聯考數學理卷 題型:解答題
(14分)設函數f(x)=xn(n≥2,n∈N*)
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范圍;
(2)若Fn(x)=f(x-b)-f(x-a),對任意n≥a (2≥a>b>0),
證明:F
(n)≥n(a-b)(n-b)n-2。
查看答案和解析>>
科目:高中數學 來源:2010-2011學年湖北省、鐘祥一中高三第二次聯考數學理卷 題型:解答題
(14分)設函數f(x)=xn(n≥2,n∈N*)
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范圍;
(2)若Fn(x)=f(x-b)-f(x-a),對任意n≥a (2≥a>b>0),
證明:F
(n)≥n(a-b)(n-b)n-2。
查看答案和解析>>
科目:高中數學 來源: 題型:
設函數f(x)=xn(n≥2,n∈N*)
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范圍;
(2)若Fn(x)=f(x-b)-f(x-a),對任意n≥a (2≥a>b>0),
證明:F
(n)≥n(a-b)(n-b)n-2。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com