已知拋物線![]()
和直線
沒有公共點(其中
、
為常數),動點
是直線
上的任意一點,過
點引拋物線
的兩條切線,切點分別為
、
,且直線
恒過點
.
(1)求拋物線
的方程;
(2)已知
點為原點,連結
交拋物線
于
、
兩點,
證明:![]()
科目:高中數學 來源: 題型:解答題
(本題滿分14分)
已知橢圓C:
(a>b>0)的離心率為
,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓E:
(a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標原點,
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且
?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線
的焦點,
離心率等于
.直線
與橢圓C交于
兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 橢圓C的右焦點
是否可以為
的垂心?若可以,求出直線
的方程;
若不可以,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:單選題
在極坐標系中,以極點為坐標原點,極軸為x軸正半軸,建立直角坐標系,點M(2,
)的直角坐標是( )
| A.(2,1) | B.( | C.(1, | D.(1,2) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com