【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù),
),直線
的極坐標(biāo)方程為
.
(1)寫出曲線
的普通方程和直線
的直角坐標(biāo)方程;
(2)
為曲線
上任意一點,
為直線
任意一點,求
的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,過橢圓
右焦點的直線
交橢圓
于
兩點,
為
的中點,且直線
的斜率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)另一直線
與橢圓
交于
兩點,原點
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且![]()
(1)求證:不論
為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時,平面BEF⊥平面ACD ?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,設(shè)b>a≥0,若f(a)=f(b),則af(b)的取值范圍是( )
A.[
,2)
B.[﹣
,+∞)
C.[﹣
,﹣
)
D.[﹣
,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+c,當(dāng)x∈R時f(x)=f(2﹣x)恒成立,且3是f(x)的一個零點. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設(shè)g(x)=f(ax)(a>1),若函數(shù)g(x)在區(qū)間[﹣1,1]上的最大值等于5,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(其中
,且
為常數(shù)).
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)若對于任意的
,都有
成立,求
的取值范圍;
(3)若方程
在
上有且只有一個實根,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個
列聯(lián)表;
(2)判斷性別與休閑方式是否有關(guān)系.
| 0.05 | 0.025 | 0.010 |
| 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個幾何體的正視圖和俯視圖.
![]()
(Ⅰ)試判斷該幾何體是什么幾何體?
(Ⅱ)畫出其側(cè)視圖,并求該平面圖形的面積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:在等式
中,把
,
,
,…,
叫做三項式的
次系數(shù)列(如三項式的1次系數(shù)列是1,1,1).
(1)填空:三項式的2次系數(shù)列是_______________;
三項式的3次系數(shù)列是_______________;
(2)由楊輝三角數(shù)陣表可以得到二項式系數(shù)的性質(zhì)
,類似的請用三項式
次系數(shù)列中的系數(shù)表示
(無須證明);
(3)求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com