【題目】如下圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
![]()
(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.
【答案】(1)y=3或3x+4y-12=0;(2)
【解析】試題分析:(1)兩直線方程聯(lián)立可解得圓心坐標(biāo),又知圓
的半徑為
,可得圓的方程,根據(jù)點(diǎn)到直線距離公式,列方程可求得直線斜率,進(jìn)而得切線方程;(2)根據(jù)圓
的圓心在直線
:
上可設(shè)圓
的方程為
,由
可得
的軌跡方程為
,若圓
上存在點(diǎn)
,使
,只需兩圓有公共點(diǎn)即可.
試題解析:(1)由
得圓心
,
∵圓
的半徑為1,
∴圓
的方程為:
,
顯然切線的斜率一定存在,設(shè)所求圓
的切線方程為
,即
.
∴
,
∴
,∴
或
.
∴所求圓
的切線方程為
或
.
(2)∵圓
的圓心在直線
:
上,所以,設(shè)圓心
為
,
則圓
的方程為
.
又∵
,
∴設(shè)
為
,則
,整理得
,設(shè)為圓
.
所以點(diǎn)
應(yīng)該既在圓
上又在圓
上,即圓
和圓
有交點(diǎn),
∴
,
由
,得
,
由
,得
.
綜上所述,
的取值范圍為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某班的50名學(xué)生進(jìn)行不記名問卷調(diào)查,內(nèi)容為本周使用手機(jī)的時(shí)間長(zhǎng),如表:
時(shí)間長(zhǎng)(小時(shí)) |
|
|
|
|
|
女生人數(shù) | 4 | 11 | 3 | 2 | 0 |
男生人數(shù) | 3 | 17 | 6 | 3 | 1 |
(1)求這50名學(xué)生本周使用手機(jī)的平均時(shí)間長(zhǎng);
(2)時(shí)間長(zhǎng)為
的7名同學(xué)中,從中抽取兩名,求其中恰有一個(gè)女生的概率;
(3)若時(shí)間長(zhǎng)為
被認(rèn)定“不依賴手機(jī)”,
被認(rèn)定“依賴手機(jī)”,根據(jù)以上數(shù)據(jù)完成
列聯(lián)表:
不依賴手機(jī) | 依賴手機(jī) | 總計(jì) | |
女生 | |||
男生 | |||
總計(jì) |
能否在犯錯(cuò)概率不超過0.15的前提下,認(rèn)為學(xué)生的性別與依賴手機(jī)有關(guān)系?
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右頂點(diǎn)為
,上頂點(diǎn)為
,離心率
,
為坐標(biāo)原點(diǎn),圓
與直線
相切.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)已知四邊形
內(nèi)接于橢圓
.記直線
的斜率分別為
,試問
是否為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán).集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井.取得了地質(zhì)資料,進(jìn)入全面勘探時(shí)期后.集團(tuán)按網(wǎng)絡(luò)點(diǎn)來布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高.如果新設(shè)計(jì)的井位與原有井位重合或接近.便利用舊并的地質(zhì)資料.不必打這日新并,以節(jié)約勘探費(fèi)與用,勘探初期數(shù)據(jù)資料見如表:
井號(hào) |
|
|
|
|
|
|
坐標(biāo) |
|
|
|
|
|
|
鉆探深度 |
|
|
|
|
|
|
出油量 |
|
|
|
|
|
|
(參考公式和計(jì)算結(jié)果:
,
,
,
).
(
)
號(hào)舊井位置線性分布,借助前
組數(shù)據(jù)求得回歸直線方程為
,求
的值.
(
)現(xiàn)準(zhǔn)備勘探新井
,若通過
,
,
,
號(hào)井計(jì)算出的
,
的值(
,
精確到
)相比于(
)中的
,
,值之差不超過
.則使用位置最接近的已有舊井
.否則在新位置打開,請(qǐng)判斷可否使用舊井?
(
)設(shè)出油量與勘探深度的比值
不低于
的勘探井稱為優(yōu)質(zhì)井,那么在原有
口井中任意勘探
口井,求勘探優(yōu)質(zhì)井?dāng)?shù)
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線
的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸正方向建立平面直角坐標(biāo)系,曲線
的直角坐標(biāo)方程是
(
為參數(shù)).
(Ⅰ)將曲線
的參數(shù)方程化為普通方程;
(Ⅱ)求曲線
與曲線
交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:
=1(a>b>0)的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線l:y=-x+3與橢圓E有且只有一個(gè)公共點(diǎn)T.
(1)求橢圓E的方程及點(diǎn)T的坐標(biāo);
(2)設(shè)O是坐標(biāo)原點(diǎn),直線l'平行于OT,與橢圓E交于不同的兩點(diǎn)A,B,且與直線l交于點(diǎn)P,證明:存在常數(shù)λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)當(dāng)
時(shí),求
的極值;
(2)若
有兩個(gè)不同的極值點(diǎn)
,求
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
sin 2x-cos2x-
,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c=
,f(C)=0,若sin B=2sin A,求a,b的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com