【題目】設函數
是定義在
上的偶函數,當
時,
).
(1)當
時,求
的解析式;
(2)若
,試判斷
的上單調性,并證明你的結論;
(3)是否存在
,使得當
時,
有最大值
.
科目:高中數學 來源: 題型:
【題目】在底面是邊長為6的正方形的四棱錐P--ABCD中,點P在底面的射影H為正方形ABCD的中心,異面直線PB與AD所成角的正切值為
,則四棱錐P--ABCD的內切球與外接球的半徑之比為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐
中,四邊形
為矩形,
為等腰三角形,
,平面
平面
,且
,
,
分別為
的中點.
![]()
(1)證明:
平面
;
(2)證明:平面
平面
;
(3)求四棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線
的極坐標方程
.以極點為原點,極軸為
軸非負半軸建立平面直角坐標系,且在兩坐標系中取相同的長度單位,直線
的參數方程為
(
為參數).
(1)寫出曲線
的參數方程和直線
的普通方程;
(2)過曲線
上任意一點
作與直線
相交的直線,該直線與直線
所成的銳角為
,設交點為
,求
的最大值和最小值,并求出取得最大值和最小值時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某小區中央廣場由兩部分組成,一部分是邊長為
的正方形
,另一部分是以
為直徑的半圓,其圓心為
.規劃修建的
條直道
,
,
將廣場分割為
個區域:Ⅰ、Ⅲ、Ⅴ為綠化區域(圖中陰影部分),Ⅱ、Ⅳ、Ⅵ為休閑區域,其中點
在半圓弧上,
分別與
,
相交于點
,
.(道路寬度忽略不計)
![]()
(1)若
經過圓心,求點
到
的距離;
(2)設
,
.
①試用
表示
的長度;
②當
為何值時,綠化區域面積之和最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列
同時滿足:①對于任意的正整數
,
恒成立;②對于給定的正整數
,
對于任意的正整數
恒成立,則稱數列
是“
數列”.
(1)已知
判斷數列
是否為“
數列”,并說明理由;
(2)已知數列
是“
數列”,且存在整數
,使得
,
,
,
成等差數列,證明:
是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙、丁四位同學參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學的話恰有兩句是對的,則( )
A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎
C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎
【答案】C
【解析】若甲乙丙同時獲獎,則甲丙的話錯,乙丁的話對;符合題意;
若甲乙丁同時獲獎,則乙的話錯,甲丙丁的話對;不合題意;
若甲丙丁同時獲獎,則丙丁的話錯,甲乙的話對;符合題意;;
若丙乙丁同時獲獎,則甲乙丙的話錯,丁的話對;不合題意;
因此乙和丁不可能同時獲獎,選C.
【題型】單選題
【結束】
12
【題目】已知當
時,關于
的方程
有唯一實數解,則
值所在的范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com