【題目】對于給定的大于1的正整數n,設
,其中
,且
記滿足條件的所有x的和為
,
(1)求
(2)設
,求![]()
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費用支出x萬元與銷售額y萬元之間有如下的對應數據:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據此估計廣告費用為12萬元時,銷售收入y的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,D,E分別是BC,AB的中點,PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC與DE所成的角為α,PD與平面ABC所成的角為β,二面角P﹣BC﹣A的平面角為γ,則α,β,γ的大小關系是( ) ![]()
A.α<β<γ
B.α<γ<β
C.β<α<γ
D.γ<β<α
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x0 , x0+
是函數f(x)=cos2(wx﹣
)﹣sin2wx(ω>0)的兩個相鄰的零點
(1)求
的值;
(2)若對
,都有|f(x)﹣m|≤1,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐P﹣ABC中,D為AB的中點.
![]()
(1)與BC平行的平面PDE交AC于點E,判斷點E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為
,命中一次得3分;命中乙靶的概率為
,命中一次得2分,若沒有命中則得0分,用隨機變量
表示該射手一次測試累計得分,如果
的值不低于3分就認為通過測試,立即停止射擊;否則繼續射擊,但一次測試最多打靶3次,每次射擊的結果相互獨立。
(1)如果該射手選擇方案1,求其測試結束后所得分
的分布列和數學期望E
;
(2)該射手選擇哪種方案通過測試的可能性大?請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A,B,C是橢圓M:
上的三點,其中點A是橢圓的右頂點,BC過橢圓M的中心,且滿足AC⊥BC,BC=2AC。
![]()
(1)求橢圓的離心率;
(2)若y軸被△ABC的外接圓所截得弦長為9,求橢圓方程。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
已知拋物線
的焦點為
,
為
上異于原點的任意一點,過點
的直線
交
于另一點
,交
軸的正半軸于點
,且有
.當點
的橫坐標為
時,
為正三角形.
(Ⅰ)求
的方程;
(Ⅱ)若直線
,且
和
有且只有一個公共點
,
(ⅰ)證明直線
過定點,并求出定點坐標;
(ⅱ)
的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
=(3,﹣4),
=(6,﹣3),
=(5﹣x,﹣3﹣y),
=(4,1)
(1)若四邊形ABCD是平行四邊形,求x,y的值;
(2)若△ABC為等腰直角三角形,且∠B為直角,求x,y的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com