(本小題共14分)
已知橢圓
和圓
:
,過橢圓上一點
引圓
的兩條切線,切點分別為
.
(Ⅰ)(ⅰ)若圓
過橢圓的兩個焦點,求橢圓的離心率![]()
;
(ⅱ)若橢圓上存在點
,使得
,求橢圓離心率
的取值范圍;
(Ⅱ)設直線
與
軸、
軸分別交于點
,
,求證:
為定值.![]()
科目:高中數(shù)學 來源: 題型:
(08年北京卷文)(本小題共14分)
已知
的頂點
在橢圓
上,
在直線
上,且
.
(Ⅰ)當
邊通過坐標原點
時,求
的長及
的面積;
(Ⅱ)當
,且斜邊
的長最大時,求
所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題共14分)
已知雙曲線
的離心率為
,右準線方程為![]()
(Ⅰ)求雙曲線
的方程;(Ⅱ)設直線
是圓
上動點
處的切線,
與雙曲線
交于不同的兩點
,證明
的大小為定值..
查看答案和解析>>
科目:高中數(shù)學 來源:2010年北京市宣武區(qū)高三第二次模擬考試數(shù)學(理) 題型:解答題
(本小題共14分)
已知
,動點
到定點![]()
的距離比
到定直線
的距離小
.
(I)求動點
的軌跡
的方程;
(Ⅱ)設
是軌跡
上異于原點
的兩個不同點,
,求
面積的最小值;
(Ⅲ)在軌跡
上是否存在兩點
關于直線
對稱?若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年普通高中招生考試北京市高考理科數(shù)學 題型:解答題
((本小題共14分)
已知橢圓
.過點(m,0)作圓
的切線l交橢圓G于A,B兩點.
(I)求橢圓G的焦點坐標和離心率;
(II)將
表示為m的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年北京市豐臺區(qū)高三下學期統(tǒng)一練習數(shù)學理卷 題型:解答題
(本小題共14分)
已知點
,
,動點P滿足
,記動點P的軌跡為W.
(Ⅰ)求W的方程;
(Ⅱ)直線
與曲線W交于不同的兩點C,D,若存在點
,使得
成立,求實數(shù)m的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com