(本小題滿分12分)已知橢圓![]()
的離心率為
,橢圓短軸的一個端點(diǎn)與兩個焦點(diǎn)構(gòu)成的三角形的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知動直線
與橢圓
相交于
、
兩點(diǎn).
①若線段
中點(diǎn)的橫坐標(biāo)為
,求斜率
的值;
②已知點(diǎn)
,求證:
為定值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)(理科)已知橢圓
,過焦點(diǎn)且垂直于長軸的弦長為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓的方程;
(2)過點(diǎn)![]()
的直線
交橢圓于
兩點(diǎn),交直線
于點(diǎn)
,且
,
,
求證:
為定值,并計算出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
上的動點(diǎn)到焦點(diǎn)距離的最小值為
,以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點(diǎn)
(2,0)的直線與橢圓
相交于
兩點(diǎn),
為橢圓上一點(diǎn), 且滿足
(
為坐標(biāo)原點(diǎn)),當(dāng)
時,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知長方形
,
,
,以
的中點(diǎn)
為
原點(diǎn)建立如圖所示的平面直角坐標(biāo)系
.
(1)求以A、B為焦點(diǎn),且過C、D兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓上任意一點(diǎn)為P,在x軸上有一個動點(diǎn)Q(t,0),其中
,探究
的最
小值
。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知直線
上有一個動點(diǎn)
,過點(diǎn)
作直線
垂直于
軸,動點(diǎn)
在
上,且滿足
(
為坐標(biāo)原點(diǎn)),記點(diǎn)
的軌跡為
.
(1)求曲線
的方程;
(2)若直線
是曲線
的一條切線, 當(dāng)點(diǎn)
到直線
的距離最短時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2).求過點(diǎn)P(1,2)的直線l的斜率k的取值范圍,使l與C只有一個交點(diǎn);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對于過點(diǎn)M(m,0)且與曲線C有兩個交點(diǎn)A,B的任一直線,都有
?若存在,求出m的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.(本題滿分14分)已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在X軸上,橢圓短半軸長為1,動點(diǎn)
在直線
上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以線段OM為直徑且被直線
截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作直線OM的垂線與以線段OM為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,AB是過橢圓左焦點(diǎn)F的一弦,C是橢圓的右焦點(diǎn),已知|AB|=|AC|=4,∠BAC=90°,求橢圓方程.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com