【題目】如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2
,BC=6.
(1)求證:BD⊥平面PAC; (2)求二面角P-BD-A的大小.
【答案】(1)見解析;(2)60°.
【解析】分析:(1)由PA⊥平面ABCD,知BD⊥PA.由tan∠ABD=
=
,tan∠BAC=
=
,知∠ABD=30°,∠BAC=60°.由此能夠證明BD⊥平面PAC.(2)連接PE,由BD⊥平面PAC,知BD⊥PE,BD⊥AE.所以∠AEP為二面角P﹣BD﹣A的平面角,由此能夠求出二面角P﹣BD﹣A的大小.
詳解:(1)∵PA⊥平面ABCD,BD平面ABCD.
∴BD⊥PA.
∵tan∠ABD=
=
,tan∠BAC=
=
,
∴∠ABD=30°,∠BAC=60°.
∴∠AEB=90°,即BD⊥AC.
∵PA∩AC=A,∴BD⊥平面PAC.
(2)連接PE,
∵BD⊥平面PAC,∴BD⊥PE,BD⊥AE.
∴∠AEP為二面角P﹣BD﹣A的平面角.
在Rt△AEB中,AE=ABsin∠ABD=
,
∴tan∠AEP=
,
∴∠AEP=60°,
∴二面角P﹣BD﹣A的大小為60°.
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,D,E分別是B1C1、BC的中點,∠BAC=90°,AB=AC=2,A1A=4,A1E=
.
(Ⅰ)證明:A1D⊥平面A1BC;
(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個結論:
①已知X服從正態分布N(0,σ2),且P(﹣2≤X≤2)=0.6,則P(X>2)=0.2;
②若命題
,則¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直線l1:ax+3y﹣1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
.
其中正確的結論的個數為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】觀察下列三角形數表: ![]()
假設第n行的第二個數為
,
(1)歸納出an+1與an的關系式,并求出an的通項公式;
(2)設anbn=1(n≥2),求證:b2+b3+…+bn<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖程序框圖的算法思路源于數學名著《幾何原本》中的“輾轉相除法”,執行該程序框圖(圖中“m MOD n”表示m除以n的余數),若輸入的m,n分別為495,135,則輸出的m=( )![]()
A.0
B.5
C.45
D.90
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】省農科站要檢測某品牌種子的發芽率,計劃采用隨機數表法從該品牌
粒種子中抽取
粒進行檢測,現將這
粒種子編號如下
,
,
,
,若從隨機數表第
行第
列的數
開始向右讀,則所抽取的第
粒種子的編號是 .(下表是隨機數表第
行至第
行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了對2016年某校中考成績進行分析,在60分以上的全體同學中隨機抽出8位,他們的數學分數(已折算為百分制)從小到大排是60、65、70、75、80、85、90、95,物理分數從小到大排是72、77、80、84、88、90、93、95. 參考公式:相關系數
,
回歸直線方程是:
,其中
,
參考數據:
,
,
,
.
(1)若規定85分以上為優秀,求這8位同學中恰有3位同學的數學和物理分數均為優秀的概率;
(2)若這8位同學的數學、物理、化學分數事實上對應如下表:
學生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數學分數x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分數y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化學分數z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用變量y與x、z與x的相關系數說明物理與數學、化學與數學的相關程度;
②求y與x、z與x的線性回歸方程(系數精確到0.01),當某同學的數學成績為50分時,估計其物理、化學兩科的得分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費
(單位:萬元)對年銷售量
(單位:噸)和年利潤
(單位:萬元)的影響。對近六年的年宣傳費
和年銷售量
的數據作了初步統計,得到如下數據:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣傳費 | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量 | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經電腦擬,發現年宣傳費
(萬元)與年銷售量
(噸)之間近似滿足關系式
即
。對上述數據作了初步處理,得到相關的值如下表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據所給數據,求
關于
的回歸方程;
(2)規定當產品的年銷售量
(噸)與年宣傳費
(萬元)的比值在區間
內時認為該年效益良好。現從這6年中任選2年,記其中選到效益良好年的數量為
,試求隨機變量
的分布列和期望。(其中
為自然對數的底數,
)
附:對于一組數據
,其回歸直線
中的斜率和截距的最小二乘估計分別為![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com