【題目】如圖,在四棱錐P﹣ABCD中,底面是正方形,側面PAD⊥底面ABCD,且PA=PD=
AD,若E、F分別為PC、BD的中點. (Ⅰ) 求證:EF∥平面PAD;
(Ⅱ) 求證:EF⊥平面PDC.![]()
【答案】證明:(Ⅰ)連接AC,則F是AC的中點,在△CPA中,EF∥PA 且PA平面PAD,EF平面PAD,
∴EF∥平面PAD
(Ⅱ)因為平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,
∴CD⊥PA
又PA=PD=
AD,
所以△PAD是等腰直角三角形,且∠APD=
,即PA⊥PD
而CD∩PD=D,
∴PA⊥平面PDC,又EF∥PA,所以EF⊥平面PDC
【解析】對于(Ⅰ),要證EF∥平面PAD,只需證明EF平行于平面PAD內的一條直線即可,而E、F分別為PC、BD的中點,所以連接AC,EF為中位線,從而得證;對于(Ⅱ)要證明EF⊥平面PDC,由第一問的結論,EF∥PA,只需證PA⊥平面PDC即可,已知PA=PD=
AD,可得PA⊥PD,只需再證明PA⊥CD,而這需要再證明CD⊥平面PAD,由于ABCD是正方形,面PAD⊥底面ABCD,由面面垂直的性質可以證明,從而得證. ![]()
科目:高中數學 來源: 題型:
【題目】重慶一中為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的
賽,
兩隊各由4名選手組成,每局兩隊各派一名選手
,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽
隊選手獲勝的概率均為
,且各局比賽結果相互獨立,比賽結束時
隊的得分高于
隊的得分的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設
為拋物線
上不同的四點,且點
關于
軸對稱,
平行于該拋物線在點
處的切線
.
(1)求證:直線
與直線
的傾斜角互補;
(2)若
,且
的面積為16,求直線
的方程.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】要得到函數
的圖象, 只需將函數
的圖象( )
A. 所有點的橫坐標伸長到原來的2倍(縱坐標不變), 再將所得的圖像向左平移
個單位.
B. 所有點的橫坐標伸長到原來的2倍(縱坐標不變), 再將所得的圖像向左平移
個單位.
C. 所有點的橫坐標縮短到原來的
倍(縱坐標不變), 再將所得的圖像向左平移
個單位.
D. 所有點的橫坐標縮短到原來的
倍(縱坐標不變), 再將所得的圖像向左平移
個單位.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一種藥在病人血液中的含量不低于2克時,它才能起到有效治療的作用,已知每服用
且
克的藥劑,藥劑在血液中的含量
克
隨著時間
小時
變化的函數關系式近似為
,其中
.
若病人一次服用9克的藥劑,則有效治療時間可達多少小時?
若病人第一次服用6克的藥劑,6個小時后再服用3m克的藥劑,要使接下來的2小時中能夠持續有效治療,試求m的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1中,D是AC中點,且直線AB1與平面BCC1B1所成的角為300,則異面直線AB1與BD所成角的大小為 ( )
![]()
A. 300
B. 450
C. 600
D. 900
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量
=(
sin
,1),
=(cos
,cos2
). (Ⅰ)若
=1,求cos(
﹣x)的值;
(Ⅱ)記f(x)=
,在△ABC中,A、B、C的對邊分別為a、b、c,且滿足(2a﹣c)cosB=bcosC,求函數f(A)的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com