【題目】地為綠化環(huán)境,移栽了銀杏樹
棵,梧桐樹
棵.它們移栽后的成活率分別
為
、
,每棵樹是否存活互不影響,在移栽的
棵樹中:
(1)求銀杏樹都成活且梧桐樹成活
棵的概率;
(2)求成活的棵樹
的分布列與期望.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,
得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)通過(Ⅰ)中的方程,求出y關(guān)于x的回歸方程;
(Ⅲ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?
(附:對于線性回歸方程
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
為坐標(biāo)原點(diǎn),動點(diǎn)
在橢圓
上,過
作
軸的垂線,垂足為
,點(diǎn)
滿足
.(Ⅰ)求點(diǎn)
的軌跡方程
;
(Ⅱ)過
的直線
與點(diǎn)
的軌跡交于
兩點(diǎn),過
作與
垂直的直線
與點(diǎn)
的軌跡交于
兩點(diǎn),求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓
的圓心為
,直線
過點(diǎn)
且與
軸不重合,
交圓
于
兩點(diǎn),過
作
的平行線交
于點(diǎn)
.
(1)證明
為定值,并寫出點(diǎn)
的軌跡方程;
(2)設(shè)
,過點(diǎn)
作直線
,交點(diǎn)
的軌跡于
兩點(diǎn) (異于
),直線
的斜率分別為
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“累積凈化量(
)”是空氣凈化器質(zhì)量的一個重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為
時對顆粒物的累積凈化量,以克表示.根據(jù)
《空氣凈化器》國家標(biāo)準(zhǔn),對空氣凈化器的累計凈化量(
)有如下等級劃分:
累積凈化量(克) |
|
|
| 12以上 |
等級 |
|
|
|
|
為了了解一批空氣凈化器(共2000臺)的質(zhì)量,隨機(jī)抽取
臺機(jī)器作為樣本進(jìn)行估計,已知這
臺機(jī)器的累積凈化量都分布在區(qū)間
中.按照
均勻分組,其中累積凈化量在
的所有數(shù)據(jù)有:
和
,并繪制了如下頻率分布直方圖:
![]()
(1)求
的值及頻率分布直方圖中的
值;
(2)以樣本估計總體,試估計這批空氣凈化器(共2000臺)中等級為
的空氣凈化器有多少臺?
(3)從累積凈化量在
的樣本中隨機(jī)抽取2臺,求恰好有1臺等級為
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
,
,則下列說法正確的是( )
A. 把
上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線![]()
B. 把
上各點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線![]()
C. 把曲線
向右平移
個單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的
,縱坐標(biāo)不變,得到曲線![]()
D. 把曲線
向右平移
個單位長度,再把得到的曲線上各點(diǎn)橫坐標(biāo)縮短到原來的
,縱坐標(biāo)不變,得到曲線![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左焦點(diǎn)
與拋物線
的焦點(diǎn)重合,橢圓
的離心率為
,過點(diǎn)
作斜率不為0的直線
,交橢圓
于
兩點(diǎn),點(diǎn)
,且
為定值.
(1)求橢圓
的方程;
(2)求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐
中,
平面
,
,點(diǎn)
分別為
的中點(diǎn),設(shè)直線
與平面
交于點(diǎn)
.
![]()
(1)已知平面
平面
,求證:
.
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com