【題目】已知橢圓
的左、右焦點分別為
、
,圓
經過橢圓
的兩個焦點和兩個頂點,點
在橢圓
上,且
,
.
(Ⅰ)求橢圓
的方程和點
的坐標;
(Ⅱ)過點
的直線
與圓
相交于
、
兩點,過點
與
垂直的直線
與橢圓
相交于另一點
,求
的面積的取值范圍.
【答案】(Ⅰ)橢圓
的方程為
, 點P的坐標為
.(Ⅱ)
.
【解析】分析:(I)由題意計算可得
,
, 則橢圓
的方程為
, 結合幾何性質可得點P的坐標為
.
(II)由題意可知直線l2的斜率存在,設l2的方程為
,與橢圓方程聯立可得
, 由弦長公式可得
; 結合幾何關系和勾股定理可得
, 則面積函數
, 換元求解函數的值域可得△ABC的面積的取值范圍是
.
詳解:(I)設
,
,
可知圓
經過橢圓焦點和上下頂點,得
,
由題意知
,得
,
由
,得
,
所以橢圓
的方程為
,
點P的坐標為
.
(II)由過點P的直線l2與橢圓
相交于兩點,知直線l2的斜率存在,
設l2的方程為
,由題意可知
,
聯立橢圓方程,得
,
設
,則
,得
,
所以
;
由直線l1與l2垂直,可設l1的方程為
,即![]()
圓心
到l1的距離
,又圓的半徑
,
所以
,
,
由
即
,得
,
,
設
,則
,
,
當且僅當
即
時,取“=”,
所以△ABC的面積的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】隨著食品安全問題逐漸引起人們的重視,有機、健康的高端綠色蔬菜越來越受到消費者的歡迎,同時生產—運輸—銷售一體化的直銷供應模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.
(1)在有機蔬菜的種植過程中,有機肥料使用是必不可少的.根據統計某種有機蔬菜的產量與有機肥料的用量有關系,每個有機蔬菜大棚產量的增加量
(百斤)與使用堆漚肥料
(千克)之間對應數據如下表
使用堆漚肥料 | 2 | 4 | 5 | 6 | 8 |
產量的增加量 | 3 | 4 | 4 | 4 | 5 |
依據表中的數據,用最小二乘法求出
關于
的線性回歸方程
;并根據所求線性回歸方程,估計如果每個有機蔬菜大棚使用堆漚肥料10千克,則每個有機蔬菜大棚產量增加量
是多少百斤?
(2)某大棚蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據經驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統計了100天有機蔬菜在每天的前8小時內的銷售量(單位:份),制成如下表格(注:
,且
);
前8小時內的銷售量(單位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數 | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天記錄的頻率作為每日前8小時銷售量發生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據,當購進17份比購進18份的利潤的期望值大時,求
的取值范圍.
附:回歸直線方程為
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】把函數
的圖象向右平移一個單位,所得圖象與函數
的圖象關于直線
對稱;已知偶函數
滿足
,當
時,
;若函數
有五個零點,則
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視臺“挑戰主持人”節目的挑戰者闖第一關需要回答三個問題,其中前兩個問題回答正確各得
分,回答不正確得
分,第三個問題回答正確得
分,回答不正確得
分.如果一個挑戰者回答前兩個問題正確的概率都是
,回答第三個問題正確的概率為
,且各題回答正確與否相互之間沒有影響.若這位挑戰者回答這三個問題總分不低于
分就算闖關成功.
(Ⅰ)求至少回答對一個問題的概率;
(Ⅱ)求這位挑戰者回答這三個問題的總得分X的分布列;
(Ⅲ)求這位挑戰者闖關成功的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是某地區2000年至2016年環境基礎設施投資額
(單位:億元)的折線圖.
![]()
為了預測該地區2018年的環境基礎設施投資額,建立了
與時間變量
的兩個線性回歸模型.根據2000年至2016年的數據(時間變量
的值依次為
)建立模型①:
;根據2010年至2016年的數據(時間變量
的值依次為
)建立模型②:
.
(1)分別利用這兩個模型,求該地區2018年的環境基礎設施投資額的預測值;
(2)你認為用哪個模型得到的預測值更可靠?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com