如圖,正方形AOCB在平面直角坐標(biāo)系
中,點(diǎn)O為原點(diǎn),點(diǎn)B在反比例函數(shù)
(
>
)圖象上,△BOC的面積為
.![]()
(1)求反比例函數(shù)
的關(guān)系式;
(2)若動(dòng)點(diǎn)E從A開始沿AB向B以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F 從B開始沿BC向C以每秒
個(gè)單位的速度運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)隨之停止運(yùn)動(dòng).若運(yùn)動(dòng)時(shí)間用t表示,△BEF的面積用
表示,求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)運(yùn)動(dòng)時(shí)間t取何值時(shí),△BEF的面積最大?
(3)當(dāng)運(yùn)動(dòng)時(shí)間為
秒時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使△PEF的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
解:(1)∵四邊形AOCB為正方形 ,∴AB=BC=OC=OA。
設(shè)點(diǎn)B坐標(biāo)為(
,
),
∵
,∴
,解得
。
又∵點(diǎn)B在第一象限,∴點(diǎn)B坐標(biāo)為(4,4)。
將點(diǎn)B(4,4)代入
得
,
∴反比例函數(shù)解析式為
。
(2)∵運(yùn)動(dòng)時(shí)間為t,動(dòng)點(diǎn)E的速度為每秒1個(gè)單位,點(diǎn)F 的速度為每秒2個(gè)單位,
∴AE=t, BF
。
∵AB=4,∴BE=
。
∴
。
∴S關(guān)于t的函數(shù)關(guān)系式為
;當(dāng)
時(shí),△BEF的面積最大。
(3)存在。
當(dāng)
時(shí),點(diǎn)E的坐標(biāo)為(
,4),點(diǎn)F的坐標(biāo)為(4,
),
①作F點(diǎn)關(guān)于
軸的對(duì)稱點(diǎn)F1,得F1(4,
),經(jīng)過點(diǎn)E、F1作直線,
由E
,4),F(xiàn)1(4,
)可得直線EF1的解析式是
,
當(dāng)
時(shí),
,∴P點(diǎn)的坐標(biāo)為(
,0)。
②作E點(diǎn)關(guān)于
軸的對(duì)稱點(diǎn)E1,得E1(
,4),經(jīng)過點(diǎn)E1、F作直線,
由E1(
,4),F(xiàn)(4,
)可得直線E1F的解析式是
,
當(dāng)
時(shí),
,∴P點(diǎn)的坐標(biāo)為(0,
)。
綜上所述,P點(diǎn)的坐標(biāo)分別為(
,0)或(0,
)。
解析試題分析:(1)根據(jù)正方形的性質(zhì)和△BOC的面積為
,列式求出點(diǎn)B的坐標(biāo),代入
,即可求得k,從而求得反比例函數(shù)的關(guān)系式。
(2)根據(jù)雙動(dòng)點(diǎn)的運(yùn)動(dòng)時(shí)間和速度表示出BF和BE,即可求得S關(guān)于t的函數(shù)關(guān)系式,化為頂點(diǎn)式即可根據(jù)二次函數(shù)的最值原理求得△BEF的面積最大時(shí)t的值。
(3)根據(jù)軸對(duì)稱的原理,分F點(diǎn)關(guān)于
軸的對(duì)稱點(diǎn)F1和E點(diǎn)關(guān)于
軸的對(duì)稱點(diǎn)E1兩種情況討論。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
甲車在彎路做剎車試驗(yàn),收集到的數(shù)據(jù)如下表所示:
| 速度 | 0 | 5 | 10 | 15 | 20 | 25 | … |
| 剎車距離 | 0 | 2 | 6 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
與直線
交于點(diǎn)O(0,0),
。點(diǎn)B是拋物線上O,A之間的一個(gè)動(dòng)點(diǎn),過點(diǎn)B分別作x軸、y軸的平行線與直線OA交于點(diǎn)C,E。![]()
(1)求拋物線的函數(shù)解析式;
(2)若點(diǎn)C為OA的中點(diǎn),求BC的長(zhǎng);
(3)以BC,BE為邊構(gòu)造條形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),求m,n之間的關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),設(shè)拋物線的頂點(diǎn)為D.![]()
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo).
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線拋物線
(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點(diǎn)為An-1(bn-1,0)和An(bn,0),當(dāng)n=1時(shí),第1條拋物線
與x軸的交點(diǎn)為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點(diǎn)坐標(biāo)為( , );
依此類推第n條拋物線yn的頂點(diǎn)坐標(biāo)為( , );
所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系是 ;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長(zhǎng),直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點(diǎn)A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長(zhǎng)度都相等?若存在,直接寫出直線的表達(dá)式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(3,4)的拋物線交 y軸與A點(diǎn),交x軸與B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,-5).![]()
(1)求此拋物線的解析式;
(2)過點(diǎn)B作線段AB的垂線交拋物線與點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請(qǐng)判斷拋物線的對(duì)稱軸與⊙C的位置關(guān)系,并給出證明.
(3)在拋物線上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形.若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,拋物線
的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.![]()
(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
(2)求DE的長(zhǎng)?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
是常數(shù))
(1)若該函數(shù)的圖像與
軸只有一個(gè)交點(diǎn),求
的值;
(2)若點(diǎn)
在某反比例函數(shù)的圖像上,要使該反比例函數(shù)和二次函數(shù)
都是
隨
的增大而增大,求
應(yīng)滿足的條件以及
的取值范圍;
(3)設(shè)拋物線
與
軸交于
兩點(diǎn),且
,
,在
軸上,是否存在點(diǎn)P,使△ABP是直角三角形?若存在,求出點(diǎn)P及△ABP的面積;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
拋物線y=﹣x2平移后的位置如圖所示,點(diǎn)A,B坐標(biāo)分別為(﹣1,0)、(3,0),設(shè)平移后的拋物線與y軸交于點(diǎn)C,其頂點(diǎn)為D.![]()
(1)求平移后的拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)∠ACB和∠ABD是否相等?請(qǐng)證明你的結(jié)論;
(3)點(diǎn)P在平移后的拋物線的對(duì)稱軸上,且△CDP與△ABC相似,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com