【題目】4836′的余角是_________,補角是_________.
科目:初中數學 來源: 題型:
【題目】如圖,直線l1的解析表達式為:y=﹣3x+3,且l1與x軸交于點D,直線l2經過點A,B,直線l1 , l2交于點C.![]()
(1)求點D的坐標;
(2)求直線l2的解析表達式;
(3)求△ADC的面積;
(4)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P( x, y1)與Q (x, y2)分別是兩個函數圖象C1與C2上的任一點. 當a ≤ x ≤ b時,有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個函數在a ≤ x ≤ b上是“相鄰函數”,否則稱它們在a ≤ x ≤ b上是“非相鄰函數”.
![]()
例如,點P(x, y1)與Q (x, y2)分別是兩個函數y = 3x+1與y = 2x - 1圖象上的任一點,當-3 ≤ x ≤ -1時,y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構造函數y = x + 2并研究該函數在-3 ≤ x ≤ -1上的性質,得到該函數值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個函數在-3 ≤ x ≤ -1上是“相鄰函數”.
(1)判斷函數y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數”,說明理由;
(2)若函數y = x2 - x與y = x - a在0 ≤ x ≤ 2上是“相鄰函數”,求a的取值范圍;
(3)若函數y =
與y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數”,直接寫出a的最大值與最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是二次函數y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(
,y2)是拋物線上兩點,則y1>y2.
其中說法正確的是( )
![]()
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,□ABCD的對角線AC、BD相交于點O,AE=CF.
(1)求證:△BOE≌△DOF;
(2)若BD=EF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,以頂點D為圓心作半徑為r的圓,若點A,B,C中至少有一個點在圓內,且至少有一個點在圓外,則r的值可以是下列選項中的( )
![]()
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com