【題目】一個盒子里有完全相同的三個小球,球上分別標上數字-1、1、2.隨機摸出一個小球(不放回),其數字記為p,再隨機摸出另一個小球,其數字記為q,則p,q使關于x的方程x2+px+q=0有實數根的概率是( )
A.
B.
C.
D. ![]()
科目:初中數學 來源: 題型:
【題目】如圖,陽光通過窗口照到教室內,豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:四邊形ABCD中,∠ABC=∠ADC=90°,AB=BC,連接BD.
(1)畫出示意圖;
(2)請問:DB平分∠ADC嗎?請給出結論,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=2x與反比例函數y=
(x>0)的圖象交于點A(4,n),AB⊥x軸,垂足為B.
(1)求k的值;
(2)點C在AB上,若OC=AC,求AC的長;
(3)點D為x軸正半軸上一點,在(2)的條件下,若S△OCD=S△ACD,求點D的坐標.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,點A,B在直線l的同側,在直線l上找一點P,使得AP+BP的值最小.
小明的思路是:如圖2所示,先作點A關于直線l的對稱點A′,使點A′,B分別位于直線l的兩側,再連接A′B,根據“兩點之間線段最短”可知A′B與直線l的交點P即為所求.
請你參考小明同學的思路,探究并解決下列問題:
(1)如圖3,在圖2的基礎上,設AA'與直線l的交點為C,過點B作BD⊥l,垂足為D.若CP=1,AC=1,PD=2,直接寫出AP+BP的值;
(2)將(1)中的條件“AC=1”去掉,換成“BD=4﹣AC”,其它條件不變,直接寫出此時AP+BP的值;
(3)請結合圖形,求
的最小值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,規定把一個三角形先沿x軸翻折,再向右平移兩個單位稱為一次變換,如圖,已知等邊三角形ABC的頂點B、C的坐標分別是,(-1,-1),(-3,-1),把三角形ABC經過連續9次這樣的變換得到三角形A’B’C’,則點A的對應點A’的坐標是_____
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年3月國際風箏節期間,王大伯決定銷售一批風箏,經市場調研:蝙蝠型風箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:
(1)用表達式表示蝙蝠型風箏銷售量y(個)與售價x(元)之間的函數關系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應定為多少?
(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形OEFG都是正方形,O是正方形ABCD的中心,OE交BC于點M,OG交CD于點N,下列結論:①△ODG≌△OCE;②GD=CE;③OG⊥CE;④若正方形ABCD的邊長為2,則四邊形OMCN的面積等于1,其中正確的結論有( )
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com