【題目】勾股定理a2+b2=c2本身就是一個關于a,b,c的方程,滿足這個方程的正整數解(a,b,c)通常叫做勾股數組.畢達哥拉斯學派提出了一個構造勾股數組的公式,根據該公式可以構造出如下勾股數組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數組可以發現,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規律,第5個勾股數組為_____.
![]()
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC、BD相交于點F,點E在BD上,且
. ![]()
(1)試問:∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過A(﹣1,0),B(5,0),C(0,-
)三點.![]()
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】函數yl=x(x≥0),
(x>0)的圖象如圖所示,則結論: ①兩函數圖象的交點A的坐標為(3,3);
②當x>3時,y2>y1;
③當x=1時,BC=8;
④當x逐漸增大時,yl隨著x的增大而增大,y2隨著x的增大而減。
其中正確結論的序號是 . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于
,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在第1個△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一點C,延長AA1到A2,使得在第2個△A1CA2中,∠A1CA2=∠A1 A2C;在A2C上取一點D,延長A1A2到A3,使得在第3個△A2DA3中,∠A2DA3=∠A2 A3D;…,按此做法進行下去,第3個三角形中以A3為頂點的內角的度數為 ;第n個三角形中以An為頂點的內角的度數為 .
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是四邊形ABCD外接圓上任意一點,且不與四邊形頂點重合,若AD是⊙O的直徑,AB=BC=CD.連接PA,PB,PC,若PA=a,則點A到PB和PC的距離之和AE+AF= . ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,點M為射線AE上任意一點(不與A重合),連接CM,將線段CM繞點C按順時針方向旋轉90°得到線段CN,直線NB分別交直線CM、射線AE于點F、D.![]()
(1)直接寫出∠NDE的度數.
(2)如圖2、圖3,當∠EAC為銳角或鈍角時,其他條件不變,(1)中的結論是否發生變化?如果不變,選取其中一種情況加以證明;如果變化,請說明理由.![]()
![]()
(3)如圖4,若∠EAC=15°,∠ACM=60°,直線CM與AB交于G,BD=
,其他條件不變,求線段AM的長.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com