分析 如圖,連接AD、DG,過點(diǎn)F作FH⊥AD于點(diǎn)H,設(shè)OC=x,則OE=BE=$\frac{1}{2}$x,根據(jù)勾股定理求得CE=$\frac{\sqrt{5}}{2}$x、AD=$\sqrt{2}$x,由∠ADO=45°知DH=FH、AH=AD-FH=$\sqrt{2}$x-FH,證Rt△COE∽R(shí)t△AHF得$\frac{FH}{AH}$=$\frac{OE}{CO}$,可得FH=$\frac{\sqrt{2}}{3}$x,繼而可知DF=$\sqrt{2}$FH=$\frac{2}{3}$x,由CF=CD-DF=$\frac{4}{3}$x可得答案.
解答 解:如圖,連接AD、DG,過點(diǎn)F作FH⊥AD于點(diǎn)H,![]()
設(shè)OC=x,則OE=BE=$\frac{1}{2}$x,
∴CE=$\sqrt{O{C}^{2}+O{E}^{2}}$=$\frac{\sqrt{5}}{2}$x,AD=$\sqrt{O{A}^{2}+O{D}^{2}}$=$\sqrt{2}$x,
∵∠ADO=45°,
∴DH=FH,
則AH=AD-FH=$\sqrt{2}$x-FH,
∵∠DAF=∠DCG,∠AHF=∠COE,
∴Rt△COE∽R(shí)t△AHF,
∴$\frac{FH}{AH}$=$\frac{OE}{CO}$,即$\frac{FH}{\sqrt{2}x-FH}$=$\frac{\frac{1}{2}x}{x}$,
解得:FH=$\frac{\sqrt{2}}{3}$x,
∴DF=$\sqrt{2}$FH=$\frac{2}{3}$x,
∵CD=2OC=2x,
∴CF=CD-DF=$\frac{4}{3}$x,
則$\frac{DF}{FC}$=$\frac{\frac{2}{3}x}{\frac{4}{3}x}$=$\frac{1}{2}$.
點(diǎn)評(píng) 本題主要考查圓周角定理、勾股定理、相似三角形判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)表示出所需線段的長(zhǎng)度是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4個(gè) | B. | 5個(gè) | C. | 6個(gè) | D. | 7個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2.80m | B. | 2.816m | C. | 2.82m | D. | 2.826m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1:2 | B. | 1:3 | C. | 1:4 | D. | 1:1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com