【題目】如圖甲,直線PA交O于A、E兩點,PA的垂線CD切O于點C,過點A作O的直徑AB.![]()
(1)求證:AC平分∠DAB;
(2)將直線CD向下平行移動,在將直線CD向下平行移動的過程中,如圖乙、丙,試指出與∠DAC相等的角(不要求證明).
(3)在圖甲中,若DC+DA=6,O的直徑為10,求AE的長度.
【答案】
(1)
證明:如圖1,連接OC,
![]()
∵OA、OC是O的半徑,
∴ OA=OC.
∴ ∠OAC=∠OCA,
∵CD切于圓O于點C,
∴ CD⊥OC,
又∵CD⊥PA,
∴ OC//PA,
∴ ∠PAC=∠OCA,
∴ ∠OAC=∠PAC,
∴ AC平分∠DAB.
(2)
∠DAC=∠BAF,理由如下:
如圖2,連接BC,
![]()
∵AB是圓O的直徑,
∴∠ACB=90°,
∴∠ACF+∠BCF=90°,
又∵在Rt△ACD中,∠DAC+∠ACD=90°,
∴∠DAC=∠FCB,
又∵∠BAF =∠FCB,
∴∠DAC=∠BAF.
![]()
如圖3,∵AB是圓O的直徑,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°,
又∵∠DAF+∠AFD=90°,∠AFD =∠CBA,
∴∠DAF=∠CAB,
∴∠DAF-∠CAF=∠CAB-∠CAF.
∴∠DAC=∠BAF.
(3)
解:如圖4所示:連接OC,過點A作AF⊥CO,垂足為F,連接CB、CE.
![]()
∵DC垂直AE,OC垂直DC,AF垂直CO,
∴ 四邊形AFCD為矩形.
∴ DC=AF,AD=CF.
設AD的長為x,則AF=6-x,OF=5-x.
在Rt△AFO中,OA2=AF2+OF2,即:25=(6-x)2+(5-x)2,
解得:x1=2,x2=9(舍去).
∴ AD=2,DC=4.
由(1)可知:∠DAC=∠BAC,
又∵∠CAD+∠DCA=90°,∠CAB+∠ABC=90°,
∴ ∠DCA=∠ABC,
∵∠DEC=∠ABC,
∴ ∠DEC=∠DCA,
又∵∠EDC=∠ADC,
∴ △EDC~△CDA,
∴
,即:
,
∴ DE=8,
∴ AE=DE-AD=8-2=6.
【解析】(1)需要證明∠OAC=∠PAC,連接OC,則OC=OA,則∠OAC=∠OCA,所以需要證明∠PAC=∠OCA,則需要證明AD//OC,而CD⊥PA,則CD⊥OC,由CD切于圓O于點C,可證得;(2)如圖2,根據兩角和為90°,等量代換得到∠DAC=∠FCB,由同弧所對的圓周角相等可得∠BAF =∠FCB,從而證得∠DAC=∠BAF;如圖3,同理由兩角和為90°,等量代換得到∠DAF=∠CAB,則∠DAC=∠BAF.(3)連接OC,過點A作AF⊥CO,垂足為F,連接CB、CE,則易得DC=AF,AD=CF,可設AD的長為x,則AF=6-x,OF=5-x,在Rt△AFO中,由勾股定理構造方程解出x,由(1)和(2)可證得∠DEC=∠DCA,又∠EDC=∠ADC,則△EDC~△CDA,由對應邊成比例解出DE,則AE=DE-AD.
【考點精析】認真審題,首先需要了解圓的定義(平面上到定點的距離等于定長的所有點組成的圖形叫做圓.定點稱為圓心,定長稱為半徑),還要掌握切線的性質定理(切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑)的相關知識才是答題的關鍵.
科目:初中數學 來源: 題型:
【題目】已知點P(x0 , y0)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d=
計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d=
=
=
=
.
根據以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線y=
x+9的位置關系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:n為正整數,點A1(x1 , y1),A2(x2 , y2),A3(x3 , y3),A4(x4 , y4)…An(xn , yn)均在直線y=x﹣1上,點B1(m1 , p1),B2(m2 , p2),B3(m3 , p3)…Bn(mn , pn)均在雙曲線y=﹣
上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,A3B3⊥x軸,…,AnBn⊥x軸,BnAn+1⊥y軸,若點A1的橫坐標為﹣1,則點A2017的坐標為( ) ![]()
A.(﹣1,﹣2)
B.(2,1)
C.(
,﹣
)
D.(
,﹣2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF. ![]()
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關系,并加以證明;
(3)若BC=6,tan∠F=
,求cos∠ACB的值和線段PE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC、BD相交于點O,設銳角∠AOB=α,將△DOC按逆時針方向旋轉得到△D′OC′(0°<旋轉角<90°)連接AC′、BD′,AC′與BD′相交于點M.
(1)當四邊形ABCD為矩形時,如圖1.求證:△AOC′≌△BOD′.![]()
(2)當四邊形ABCD為平行四邊形時,設AC=kBD,如圖2.
①猜想此時△AOC′與△BOD′有何關系,證明你的猜想;
②探究AC′與BD′的數量關系以及∠AMB與α的大小關系,并給予證明.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率;
(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AB=CD=15,AC平分∠BAD,AC與BD交于點O,將△ABD繞點D順時針方向旋轉,得到△EFD,旋轉角為α(0°<α<180°)點A的對應點為點E,點B的對應點為點F![]()
(1)求證:四邊形形ABCD是菱形
(2)若∠BAD=30°,DE邊為與AB邊相交于點M,當點F恰好落在AC上時,求證:MD=ME
(3)若△ABD的周長是48,EF邊與BC邊交于點N,DF邊與BC邊交于點P,在旋轉的過程中,當△FNP是直角三角形是,△FNP的面積是多少.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com