解:(1)∠BPD=30°;
(2)如圖,連接CD,

∵點D在∠PBC的平分線上
∴∠PBD=∠CBD
∵△ABC是等邊三角形
∴BA=BC=AC,∠ACB=60°
∵BP=BA
∴BP=BC
∵BD=BD
∴△PBD≌△CBD(SAS)
∴∠BPD=∠BCD
∵DB=DA,BC=AC,CD=CD
∴△BCD≌△ACD
∴∠BCD=∠ACD=

∠ACB=30°
∴∠BPD=30°;
(3)∠BPD=30°或150°圖形如下:

分析:(1)由于P,A重合,DP=DB,∠DBP=∠DPB,因為DB是∠PBC的平分線,因此,∠DBP=∠DPB=30°;
(2)本題可通過構建全等三角形來求解.連接CD,BP=BC,BD又是∠PBC的平分線,三角形PBD和三角形CBD中又有一公共邊,因此兩三角形全等,∠BPD=∠BCD,那么關鍵是求∠BCD的值,那么我們就要看∠BCD和∠ACB的關系了,可通過證明三角形ACD和BCD全等來得出,這兩個三角形中,BD=AD,BC=AC,有一條公共邊CD因此∠BCD=∠ACD=30°,那么就求出∠BPD的度數了;
(3)同(2)的證法完全一樣,步驟有2個,一是得出∠BCD的度數,二是證明三角形BPD和BCD全等,同(2)完全一樣.
(當∠BPD是鈍角時,∠BPD=∠BCD=(360-60)÷2=150°,還是用的(2)中的三角形BPD,BCD全等,BCD,ACD全等)
點評:本題考查了等邊三角形的性質及全等三角形的判定與性質;通過全等三角形得出角相等是解題的關鍵.