【題目】如圖,矩形BCDE的各邊分別平行于
軸或
軸,物體甲和物體乙由點(2,0)同時出發,沿矩形BCDE的邊作環繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2015次相遇地點的坐標
是( )
![]()
A. (-1,1) B. (1,-1) C. (-2,0) D. (-1,-1)
【答案】D
【解析】利用行程問題中的相遇問題,由于矩形的邊長為4和2,物體乙是物體甲的速度的2倍,求得每次相遇的地點,找出規律即可解答.
解:矩形的邊長為4和2,因為物體乙是物體甲的速度的2倍,時間相同,物體甲與物體乙的路程比為1:2,由題意知:
①第一次相遇物體甲與物體乙行的路程和為12×1,物體甲行的路程為12×
=4,物體乙行的路程為12×
=8,在BC邊相遇;
②第二次相遇物體甲與物體乙行的路程和為12×2,物體甲行的路程為12×2×
=8,物體乙行的路程為12×2×
=16,在DE邊相遇;
③第三次相遇物體甲與物體乙行的路程和為12×3,物體甲行的路程為12×3×
=12,物體乙行的路程為12×3×
=24,在A點相遇…
此時甲乙回到原出發點,則每相遇三次,兩點回到出發點,
∵2015÷3=671…2,
故兩個物體運動后的第2014次相遇地點的是:第二次相遇地點,
即物體甲行的路程為12×2×
=8,物體乙行的路程為12×2×
=16,
此時相遇點的坐標為:(-1,-1),
科目:初中數學 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.
![]()
(1)試說明:AB∥CD;
(2)若∠2=25°,求∠BFC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(___ ___)
∴∠2=∠CGD(等量代換)
∴CE∥BF(__ ___)
∴∠____ ____=∠BFD(___ ____)
又∵∠B=∠C(已知)
∴____ ____(等量代換)
∴AB∥CD(___ ____)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,若點P(4,3)在⊙O內,則⊙O的半徑r的取值范圍是( )
A. 0<r<4B. 3<r<4C. 4<r<5D. r>5
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com