【題目】如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點(diǎn)O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°
(1)如圖2,當(dāng)△ABO是等邊三角形時(shí),求證:OE=
AB;
(2)如圖3,當(dāng)△ABO是直角三角形時(shí),且∠AOB=90°,求證:OE=
AB;
(3)如圖4,當(dāng)△ABO是任意三角形時(shí),設(shè)∠OAD=α,∠OBC=β,
①試探究α、β之間存在的數(shù)量關(guān)系?
②結(jié)論“OE=
AB”還成立嗎?若成立,請(qǐng)你證明;若不成立,請(qǐng)說(shuō)明理由.
![]()
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)①α+β=90°;②成立,理由詳見(jiàn)解析.
【解析】
(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質(zhì)得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質(zhì)證明;
(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質(zhì)得到OE=
CD,證明即可;
(3)①根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計(jì)算;
②延長(zhǎng)OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)證明.
(1)作OH⊥AB于H,
![]()
∵AD、BC的垂直平分線相交于點(diǎn)O,
∴OD=OA,OB=OC,
∵△ABO是等邊三角形,
∴OD=OC,∠AOB=60°,
∵∠AOB+∠COD=180°
∴∠COD=120°,
∵OE是邊CD的中線,
∴OE⊥CD,
∴∠OCE=30°,
∵OA=OB,OH⊥AB,
∴∠BOH=30°,BH=
AB,
在△OCE和△BOH中,
,
∴△OCE≌△OBH,
∴OE=BH,
∴OE=
AB;
(2)∵∠AOB=90°,∠AOB+∠COD=180°,
∴∠COD=90°,
在△OCD和△OBA中,
,
∴△OCD≌△OBA,
∴AB=CD,
∵∠COD=90°,OE是邊CD的中線,
∴OE=
CD,
∴OE=
AB;
(3)①∵∠OAD=α,OA=OD,
∴∠AOD=180°﹣2α,
同理,∠BOC=180°﹣2β,
∵∠AOB+∠COD=180°,
∴∠AOD+∠COB=180°,
∴180°﹣2α+180°﹣2β=180°,
整理得,α+β=90°;
②延長(zhǎng)OE至F,使EF=OE,連接FD、FC,
![]()
則四邊形FDOC是平行四邊形,
∴∠OCF+∠COD=180°,
,
∴∠AOB=∠FCO,
在△FCO和△AOB中,
,
∴△FCO≌△AOB,
∴FO=AB,
∴OE=
FO=
AB.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,CA=CB,∠ACB=α.點(diǎn)P 是平面內(nèi)不與點(diǎn)A,C 重合的任意一點(diǎn),連接AP,將線段AP 繞點(diǎn)P 逆時(shí)針旋轉(zhuǎn)α得到線段DP,連接AD,BD,CP.
(1)猜想觀察:如圖1,當(dāng)α=60°時(shí),
的值是________,直線BD與直線CP相交所成的較小角的度數(shù)是________.
(2)類(lèi)比探究:如圖2,當(dāng)α=90°時(shí),請(qǐng)寫(xiě)出
的值及直線BD與直線CP相交所成的較小角的度數(shù),并就圖2的情形說(shuō)明理由.
(3)解決問(wèn)題:如圖3,當(dāng)α=90°時(shí),若點(diǎn) E,F 分別是 CA,CB 的中點(diǎn),點(diǎn) P 在FE的延長(zhǎng)線上,P,D,C三點(diǎn)在同一直線上,AC與BD相交于點(diǎn)M,DM=2-
,求AP的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=
(a≠0)的圖象在第二象限交于點(diǎn)A(m,2).與x軸交于點(diǎn)C(﹣1,0).過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,△ABC的面積是3.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若直線AC與y軸交于點(diǎn)D,求△BCD的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點(diǎn)C是圓上一點(diǎn),點(diǎn)D是弧BC中點(diǎn),過(guò)點(diǎn)D作⊙O切線DF,連接AC并延長(zhǎng)交DF于點(diǎn)E.
(1)求證:AE⊥EF;
(2)若圓的半徑為5,BD=6 求AE的長(zhǎng)度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車(chē)從A地沿這條公路勻速駛向C地,乙車(chē)從B地沿這條公路勻速駛向A地,在甲、乙行駛過(guò)程中,甲、乙兩車(chē)各自與C地的距離y(km)與甲車(chē)行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.則當(dāng)乙車(chē)到達(dá)A地時(shí),甲車(chē)已在C地休息了_____小時(shí).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D、E,AD與BE相交于點(diǎn)F.
(1)求證:△ACD∽△BFD;
(2)若∠ABD=45°,AC=3時(shí),求BF的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷(xiāo)售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷(xiāo)售量是 斤(用含x的代數(shù)式表示);
(2)銷(xiāo)售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形
中,
,以
為圓心,
長(zhǎng)為半徑畫(huà)
,點(diǎn)
在
上移動(dòng),連接
,并將
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)
至
,連接
.在點(diǎn)
移動(dòng)的過(guò)程中,
長(zhǎng)度的最小值是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了拆除震后危樓,抗震減災(zāi)工作組對(duì)所剩部分危樓樓房進(jìn)行摸排測(cè)量.在危樓樓角B點(diǎn)處,測(cè)得危樓樓頂A的仰角為60°;沿樓角B點(diǎn)的正前方前進(jìn)8米到達(dá)點(diǎn)C,在離C點(diǎn)2米高的D處測(cè)得危樓樓頂A的仰角為30°.請(qǐng)根據(jù)以上測(cè)量數(shù)據(jù),求出樓頂A離地面的高度.(
≈1.7,精確到1米)
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com