【題目】已知Rt△ABC中,∠B=90°,
(1)根據要求作圖(尺規作圖,保留作圖痕跡,不寫畫法):
①作∠BAC的平分線AD交BC于D;
②作線段AD的垂直平分線交AB于E,交AC于F,垂足為H;
③連接ED.
(2)在(1)的基礎上寫出一對全等三角形:△ ≌△ 并加以證明.
![]()
科目:初中數學 來源: 題型:
【題目】已知甲煤場有煤518噸,乙煤場有煤106噸,為了使甲煤場存煤是乙煤場的2倍,需要從甲煤場運煤到乙煤場,設從甲煤場運煤x噸到乙煤場,則可列方程為( )
A.518=2(106+x)
B.518﹣x=2×106
C.518﹣x=2(106+x)
D.518+x=2(106﹣x)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過△ABC的三個頂點,與y軸相交于(0,
),點A坐標為(﹣1,2),點B是點A關于y軸的對稱點,點C在x軸的正半軸上.
(1)求該拋物線的函數關系表達式.
(2)點F為線段AC上一動點,過F作FE⊥x軸,FG⊥y軸,垂足分別為E、G,當四邊形OEFG為正方形時,求出F點的坐標.
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,﹣4).
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第一象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數關系式;
(3)當(2)中的平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com