【題目】如圖,∠AOB=45°,過OA上到點O的距離分別為1,3,5,7,9,11,的點作OA的垂線與OB相交,得到并標出一組黑色梯形,它們的面積分別為S1,S2,S3,S4,…,觀察圖中的規律,求出第10個黑色梯形的面積S10=_____.
![]()
【答案】76
【解析】
仔細觀察可發現規律:第n個黑色梯形的上底=1+(n﹣1)×4,下底=1+(n﹣1)×4+2,然后按此公式求得上下底,再利用面積公式計算面積就行了.
解法①:從圖中可以看出,第一個黑色梯形的上底為1,下底為3,第2個黑色梯形的上底為5=1+4,下底為7=1+4+2,第3個黑色梯形的上底為9=1+2×4,下底為11=1+2×4+2,則第n個黑色梯形的上底=1+(n﹣1)×4,下底=1+(n﹣1)×4+2,
∴第10個黑色梯形的上底=1+(10﹣1)×4=37,下底=1+(10﹣1)×4+2=39,
∴第10個黑色梯形面積S10=
×(37+39)×2=76.
解法②根據圖可知:
S1=4,
S2=12,
S3=20,
以此類推得Sn=8n﹣4,
S10=8×10﹣4=76.
科目:初中數學 來源: 題型:
【題目】如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點A1,A2,A3,…都在直線C1C2同側,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,則△AnCnCn+1的周長為_______(n≥1,且n為整數).
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】彈簧原長(不掛重物)15cm,彈簧總長L(cm)與重物質量x(kg)的關系如下表所示:
彈簧總長L(cm) | 16 | 17 | 18 | 19 | 20 |
重物重量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
當重物質量為5kg(在彈性限度內)時,彈簧總長L(cm)是( )
A.22.5B.25C.27.5D.30
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數y=-
x2+bx+C的圖象與坐標軸交于A、B、C三點,其中點A的坐標為(0,8),點B的坐標為(-4,0).
(1)求該二次函數的表達式及點C的坐標;
(2)點D的坐標為(0,4),點F為該二次函數在第一象限內圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設平行四邊形CDEF的面積為S.
①求S的最大值;
②在點F的運動過程中,當點E落在該二次函數圖象上時,請直接寫出此時S的值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某風景區內有一瀑布,AB表示瀑布的垂直高度,在與瀑布底端同一水平位置的點D處測得瀑布頂端A的仰角β為45°,沿坡度i=1:3的斜坡向上走100米,到達觀景臺C,在C處測得瀑布頂端A的仰角α為37°,若點B、D、E在同一水平線上.(參考數據:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,
≈1.41,
≈3.16)
![]()
(1)觀景臺的高度CE為 米(結果保留準確值);
(2)求瀑布的落差AB(結果保留整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點,交y軸于M點拋物線L1向右平移2個單位得到拋物線L2,L2交x軸于C,D兩點.
![]()
(1)求拋物線L2對應的函數表達式;
(2)拋物線L1或L2在x軸上方的部分是否存在點N,使以A,C,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由;
(3)若點P是拋物線L1上的一個動點(P不與點A,B重合),那么點P關于原點的對稱點Q是否在拋物線L2上?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,四邊形
是正方形,點
為正方形
對角線的交點,點
,點
,點
.分別延長
到
,
到
,使
,
,再以
,
為鄰邊作平行四邊形
.
(Ⅰ)求點
的坐標;
(Ⅱ)如圖②,將四邊形
繞點
逆時針旋轉得四邊形
,點
,
,
旋轉后的對應點分別為
,
,
,旋轉角為
.
①旋轉過程中,當
時,求點
的坐標;
②在旋轉過程中,求
的取值范圍(直接寫出結果即可).
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年由于防控疫情,師生居家隔離線上學習,AB和CD是社區兩棟鄰樓的示意圖,小華站在自家陽臺的C點,測得對面樓頂點A的仰角為30°,地面點E的俯角為45°.點E在線段BD上.測得B,E間距離為8.7米.樓AB高12
米.求小華家陽臺距地面高度CD的長(結果精確到1米,
1.41,
1.73)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著地鐵和共享單車的發展,“地鐵+單車”已成為很多市民出行的選擇.李華從文化宮站出發,先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設他出地鐵的站點與文化宮站的距離為
(單位:km),乘坐地鐵的時間
(單位:min)是關于
的一次函數,其關系如下表:
地鐵站 | A | B | C | D | E |
x/km | 7 | 9 | 11 | 12 | 13 |
y1/min | 16 | 20 | 24 | 26 | 28 |
(1)求
關于
的函數解析式;
(2)李華騎單車的時間
(單位:min)也受
的影響,其關系可以用
=![]()
2-11
+78來描述.求李華應選擇在哪一站出地鐵,才能使他從文化宮站回到家所需的時間最短,并求出最時間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com