【題目】圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連結AB、AE、BE.已知tan∠CBE=
,A(3,0),D(﹣1,0),E(0,3).![]()
![]()
(1)求拋物線的解析式及頂點B的坐標;
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標軸上是否存在一點P,使以D、E、P為頂點的三角形與△ABE相似,若存在,求出點P的坐標;若不存在,請說明理由.
【答案】
(1)
解:設拋物線的解析式為y=a(x+1)(x﹣3).
∵將點E(0,3)代入拋物線的解析式得:﹣3a=3,
∴a=﹣1.
∴拋物線的解析式為y=﹣(x+1)(x﹣3)=﹣x2+2x+3.
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴B(1,4)
(2)
解:如圖1所示:過點B作BF⊥y軸,垂足為F.
![]()
∵A(3,0),E(0,3),
∴OE=OA=3.
∴∠OEA=45°.
∵E(0,3),B(1,4),
∴EF=BF.
∴∠FEB=45°.
∴∠BEA=90°.
∴AB為△ABE的外接圓的直徑.
∵∠FEB=∠OEA=45°,∠EOA=∠BFE,
∴△BFE∽△AOE.
∴tan∠EAB=
=
.
∵tan∠CBE=
,
∴∠CBE=∠EAB.
∵∠EAB+∠EBA=90°,
∴∠CBE+∠EBA=90°,即∠CBA=90°.
∴CB是△ABE的外接圓的切線
(3)
解:如圖2所示:
![]()
∵
且∠DOE=∠BEA=90°,
∴△EOD∽△AEB.
∴當點P與點O重合時,△EPD∽△AEB.
∴點P的坐標為(0,0).
過點D作DP′⊥DE,交y軸與點P′.
∵∠P′ED=∠DEO,∠DOE=∠EDP′,
∴△EDP′∽△EOD.
又∵△EOD∽△AEB,
∴△EDP′∽△AEB.
∵∠ODP′+∠OP′D=90°,∠DEP′+∠OP′D=90°,
∴∠ODP′=∠DEP′.
∴
=
,即
.
∴OP′=
.
∴點P′的坐標為(0,﹣
).
過點E作EP″⊥DE,交x軸與點P″.
∵∠EDP″=∠EDO,∠EOD=∠DEP″,
∴△EDO∽△P″DE.
∵又∵△EOD∽△AEB,
∴△EDP″∽△AEB.
∴∠EP″O=∠BAE.
∴tan∠EP″O=
=
,即
=
.
∴OP″=9.
∴P″(9,0).
綜上所述,點P的坐標為(0,0)或(0,﹣
)或(9,0)
【解析】(1)設拋物線的解析式為y=a(x+1)(x﹣3),將點E(0,3)代入拋物線的解析式求得a的值,從而可得到拋物線的解析式;(2)過點B作BF⊥y軸,垂足為F.先依據配方法可求得點B的坐標,然后依據點A、B、E三點的坐標可知△BFE和△EAO為等腰直角三角形,從而可證明△BAE為直角三角形,接下來證明△BFE∽△EOA,由相似三角形的性質可證明
=
,從而可得到∠CBE=∠EAB,于是可證明∠CBA=90°,故此CB是△ABE的外接圓的切線;(3)過點D作DP′⊥DE,交y軸與點P′,過點E作EP″⊥DE,交x軸與點P″.然后證明△DEO、△P′DO、△EP″O均與△BAE相似,然后依據相似三角形的性質分別可求得DO、OP′、OP″的長度,從而可求得點P的坐標.
【考點精析】本題主要考查了二次函數的圖象和二次函數的性質的相關知識點,需要掌握二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連結CH、CG.
(1)求證:CG平分∠DCB;
(2)在正方形ABCO繞點C逆時針旋轉的過程中,求線段HG、OH、BG之間的數量關系;
(3)連結BD、DA、AE、EB,在旋轉的過程中,四邊形AEBD是否能在點G滿足一定的條件下成為矩形?若能,試求出直線DE的解析式;若不能,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.
(1)求∠COE的度數;
(2)若OF⊥OE,求∠COF的度數.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線
:
交
、
軸分別為
、
兩點,
點與
點關于
軸對稱.動點
、
分別在線段
、
上(點
不與點
、
重合),滿足
.
![]()
(1)點
坐標是 ,
.
(2)當點
在什么位置時,
,說明理由.
(3)當
為等腰三角形時,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠生產一種產品,當生產數量至少為10噸,但不超過50噸時,每噸的成本y(萬元/噸)與生產數量x(噸)的函數關系的圖象如圖所示.
![]()
(1)求y關于x的函數解析式,并寫出x的取值范圍;
(2)當生產這種產品每噸的成本為7萬元時,求該產品的生產數量.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D點,O是AB上一點,經過A、D兩點的⊙O分別交AB、AC于點E、F. ![]()
(1)用尺規補全圖形(保留作圖痕跡,不寫作法);
(2)求證:BC與⊙O相切;
(3)當AD=
,∠CAD=30°時,求劣弧AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某醫藥研究所開發了一種新藥,在試驗藥效時發現,如果成人按規定劑量服用,那么服藥后2小時血液中含藥量最高,達到每毫升6微克,接著就逐步衰減,10小時后血液中含藥量為每毫升3微克,每毫升血液中含藥量
(微克)隨時間
(小時)的變化如圖所示,那么成年人規定劑量服藥后:
![]()
(1)y與x之間的函數關系式.
(2)如果每毫升血液中含藥量在4微克或4微克以上時,治療疾病才是有效的,那么這個有效時
間是多長?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com