【題目】如圖,正方形ABCD的邊長為4,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為F,則EF的長為( ) ![]()
A.1
B.![]()
C.4﹣2 ![]()
D.3
﹣4
【答案】C
【解析】解:在正方形ABCD中,∠ABD=∠ADB=45°,
∵∠BAE=22.5°,
∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,
在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,
∴∠DAE=∠AED,
∴AD=DE=4,
∵正方形的邊長為4,
∴BD=4
,
∴BE=BD﹣DE=4
﹣4,
∵EF⊥AB,∠ABD=45°,
∴△BEF是等腰直角三角形,
∴EF=
BE=
×(4
﹣4)=4﹣2
.
故選:C.
根據正方形的對角線平分一組對角可得∠ABD=∠ADB=45°,再求出∠DAE的度數,根據三角形的內角和定理求∠AED,從而得到∠DAE=∠AED,再根據等角對等邊的性質得到AD=DE,然后求出正方形的對角線BD,再求出BE,最后根據等腰直角三角形的直角邊等于斜邊的
倍計算即可得解.
科目:初中數學 來源: 題型:
【題目】某市“全國文明村”白村果農王保收獲枇杷20噸,桃子12噸.現計劃租用甲、乙兩種貨車共8輛將這批水果全部運往外地銷售,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.
(1)王保如何安排甲、乙兩種貨車可一次性地運到銷售地?有幾種方案?
(2)若甲種貨車每輛要付運輸費300元,乙種貨車每輛要付運輸費240元,則果農王保應選擇哪種方案,使運輸費最少?最少運費是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】西柏坡是我國著名的紅色旅游勝地,如果用統計圖表示2017年“十一”黃金周期間西柏坡地區的氣溫變化情況,應利用( )
A. 條形統計圖 B. 扇形統計圖 C. 折線統計圖 D. 頻數分布直方圖
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC中,AB=AC,∠B=α.
(1)如圖1,點D,E分別在邊AB,AC上,線段DE的垂直平分線MN交直線BC于點M,交DE于點N,求證:BD+CE=BC.需補充條件∠EMN=(用含α的式子表示)補充條件后并證明;![]()
(2)把(1)中的條件改為點D,E分別在邊BA、AC延長線上,線段DE的垂直平分線MN交直線BC于點M,交DE于點N(如圖2),并補充條件∠EMN=(用含α的式子表示),通過觀察或測量,猜想線段BD,CE與BC之間滿足的數量關系,并予以證明.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com