【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求
的值.
【答案】1.
【解析】分析:利用等式的性質(zhì)將(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2變形成(x﹣y)2+(x﹣z)2+(y﹣z)2=0的形式,從而得到x=y=z,再求得
的值.
詳解:
∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,
∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,
∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,
∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.
∵x,y,z均為實數(shù),
∴x=y=z.
∴
=
=1.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=﹣
圖象上的點(diǎn),并且y1<0<y2<y3,則下列各式中正確的是( )
A.x1<x2<x3 B.x1<x3<x2
C.x2<x1<x3 D.x2<x3<x1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=10,AC=16,點(diǎn)M是對角線AC上的一個動點(diǎn),過點(diǎn)M作PQ⊥AC交AB于點(diǎn)P,交AD于點(diǎn)Q,將△APQ沿PQ折疊,點(diǎn)A落在點(diǎn)E處,當(dāng)△BCE是等腰三角形時,AP的長為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技有限公司準(zhǔn)備購進(jìn)A和B兩種機(jī)器人來搬運(yùn)化工材料,已知購進(jìn)A種機(jī)器人2個和B種機(jī)器人3個共需16萬元,購進(jìn)A種機(jī)器人3個和B種機(jī)器人2個共需14萬元,請解答下列問題:
(1)求A、B兩種機(jī)器人每個的進(jìn)價;
(2)已知該公司購買B種機(jī)器人的個數(shù)比購買A種機(jī)器人的個數(shù)的2倍多4個,如果需要購買A、B兩種機(jī)器人的總個數(shù)不少于28個,且該公司購買的A、B兩種機(jī)器人的總費(fèi)用不超過106萬元,那么該公司有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=x2+mx+1,當(dāng)0<x≤2時的函數(shù)值總是非負(fù)數(shù),則實數(shù)m的取值范圍為( )
A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4或m≥﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A,B兩點(diǎn)對應(yīng)的有理數(shù)分別為10和15,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個單位長度的速度沿數(shù)軸正方向運(yùn)動,點(diǎn)Q同時從原點(diǎn)O出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運(yùn)動,設(shè)運(yùn)動時間為t秒.
![]()
(1)當(dāng)0<t<5時,用含t的式子填空:
BP=_______,AQ=_______;
(2)當(dāng)t=2時,求PQ的值;
(3)當(dāng)PQ=
AB時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E、F分別是邊AB、AC、BC的中點(diǎn),要判定四邊形DBFE是菱形,下列所添加條件不正確的是( )
![]()
A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)①觀察一列數(shù)1,2,3,4,5,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之差是一個常數(shù),這個常數(shù)是 ;根據(jù)此規(guī)律,如果
(
為正整數(shù))表示這個數(shù)列的第
項,那么
,
;
②如果欲求
的值,可令
……………①
將①式右邊順序倒置,得
……………②
由②加上①式,得2
;
∴ S=_________________;
由結(jié)論求
;
(2)①觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是 ;根據(jù)此規(guī)律,如果
(
為正整數(shù))表示這個數(shù)列的第
項,那么
,
;
②為了求
的值,可令
,則
,因此
,所以
,
即
.
仿照以上推理,計算![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張矩形紙片
.點(diǎn)
在這張矩形紙片的邊
上,將紙片折疊,使
落在射線
上,折痕為
,點(diǎn)
分別落在點(diǎn)
處,
(1)若
,則
的度數(shù)為 °;
(2)若
,求
的長.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com