【題目】如圖,某校20周年校慶時,需要在草場上利用氣球懸掛宣傳條幅,EF為旗桿,氣球從A處起飛,幾分鐘后便飛達C處,此時,在AF延長線上的點B處測得氣球和旗桿EF的頂點E在同一直線上.![]()
(1)已知旗桿高為12米,若在點B處測得旗桿頂點E的仰角為30°,A處測得點E的仰角為45°,試求AB的長(結果保留根號);
(2)在(1)的條件下,若∠BCA=45°,繩子在空中視為一條線段,試求繩子AC的長(結果保留根號)?
【答案】
(1)
解:∵在直角△BEF中,tan∠EBF=
,
∴BE=
=
=12
.
同理AF=EF=12(米),
則AB=BF+AF=12
+12(米)
(2)
解:作AG⊥BE于點G,
在直角△ABG中,AG=ABsin30°=
(12
+12)=6
+6.
又∵直角△AGC中,∠ACG=45°,
∴AC=
AG=6
+6
(米).
![]()
【解析】(1)在直角△BEF中首先求得BF,然后在直角△AEF中求得AF,根據AB=BF+AF即可求解;(2)作AG⊥BC于點G,在直角△ABG中首先求得AG,然后在直角△AGC中利用三角函數求解.
【考點精析】解答此題的關鍵在于理解關于仰角俯角問題的相關知識,掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.
科目:初中數學 來源: 題型:
【題目】如圖,已知AB∥CD,C在D的右側,BE平分∠ABC,DE平分∠ADC,BE、DE所在直線交于點E,∠ADC=70°.
(1)求∠EDC的度數;
(2)若∠ABC=n°,求∠BED的度數(用含n的代數式表示);
(3)將線段BC沿DC方向平移,使得點B在點A的右側,其他條件不變,畫出圖形并判斷∠BED的度數是否改變,若改變,求出它的度數(用含n的式子表示);若不改變,請說明理由.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道
是無理數,而無理數是無限不循環小數,因此
的小數部分我們不可能全部地寫出來,但是由于1<
<2,所以
的整數部分為1,將
減去其整數部分1,差就是小數部分
-1,根據以上的內容,解答下面的問題:
(1)
的整數部分是 ,小數部分是 ;
(2)1+
的整數部分是 ,小數部分是 ;
(3)若設2+
整數部分是x,小數部分是y,求x-y的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2﹣4x與x軸交于點O,A,頂點為B,連接AB并延長,交y軸于點C,則圖中陰影部分的面積和為( ) ![]()
A.4
B.8
C.16
D.32
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).
(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P為;
(2)該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1 , 利用列表法或樹狀圖加以說明;
(3)該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】著名的瑞士數學家歐拉曾指出:可以表示為四個整數平方之和的甲、乙兩數相乘,其乘積仍然可以表示為四個整數平方之和,即
,這就是著名的歐拉恒等式,有人稱這樣的數為“不變心的數”.實際上,上述結論可減弱為:可以表示為兩個整數平方之和的甲、乙兩數相乘,其乘積仍然可以表示為兩個整數平方之和.
【動手一試】
試將
改成兩個整數平方之和的形式.
;
【閱讀思考】
在數學思想中,有種解題技巧稱之為“無中生有”.例如問題:將代數式
改成兩個平方之差的形式.解:原式
﹒
【解決問題】
請你靈活運用利用上述思想來解決“不變心的數”問題:將代數式
改成兩個整數平方之和的形式(其中a、b、c、d均為整數),并給出詳細的推導過程﹒
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?( )
![]()
A. AB∥CD,AD=BC B. AB=CD,AD=BC
C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D是BC的中點,點E,F分別在線段AD及其延長線上,且DE=DF.給出下列條件:
![]()
①BE⊥EC;②BF∥CE;③AB=AC;
從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是 (只填寫序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A(2,0)同時出發,沿矩形BCDE的邊作環繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2012次相遇地點的坐標是( )
![]()
A. (2,0) B. (﹣1,1) C. (﹣2,1) D. (﹣1,﹣1)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com