【題目】已知:如圖, AD=CD=CB=AB=a,DA∥CB,AB⊥CB,∠BAC的平分線交BC于E,作EF⊥AC于F,作FG⊥AB于G.
![]()
(1)求AC的長;(2)求證:AB=
AG.
【答案】(1)、
a;(2)、證明過程見解析.
【解析】
試題分析:(1)、首先根據∠B=90°,AB=BC得出△ABC為等腰直角三角形,然后根據勾股定理求出AC的長度;(2)、根據角平分線的性質得出AF=AB=a,根據等腰直角△AFG的性質求出AG的長度,得出答案.
試題解析:(1)、∵AB⊥BC ∴∠B=90° ∵AB=BC=a ∴△ABC為等腰直角三角形
∴AC=
=
a
、∵△ABC為等腰直角三角形 ∴∠CAB=45° ∵FG⊥AB ∴△AFG為等腰直角三角形
∵AE平分∠CAB EF⊥AC EB⊥AB ∴△AEF≌△AEB ∴AF=AB=a
∴根據等腰直角△AFG的勾股定理可得:AG=
a ∴AB=
AG.
科目:初中數學 來源: 題型:
【題目】如圖①,A、B、C、D四點共圓,過點C的切線CE∥BD,與AB的延長線交于點E.
(1)求證:∠BAC=∠CAD;
(2)如圖②,若AB為⊙O的直徑,AD=6,AB=10,求CE的長;
(3)在(2)的條件下,連接BC,求
的值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A=a3-2ab2+1,B=a3+ab2-3a2b,則A+B=( ).
A. 2a3-3ab2-3a2b+1 B. 2a3+ab2-3a2b+1
C. 2a3+ab2-3a2b+1 D. 2a3-ab2-3a2b+1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長線于點D,E,F.
![]()
(1)求證:∠F+∠FEC=2∠A;
(2)過B點作BM∥AC交FD于點M,試探究∠MBC與∠F+∠FEC的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E.
![]()
(1)求證:AB=BE;
(2)若PA=2,cosB=
,求⊙O半徑的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com