題目列表(包括答案和解析)
若f(x)在[a,b]上連續,在(a,b)內可導,且x∈(a,b)時,f(x)>0,又f(a)<0,則( )
A.f(x)在[a,b]上單調遞增,且f(b)>0
B.f(x)在[a,b]上單調遞增,且f(b)<0
C.f(x)在[a,b]上單調遞減,且f(b)<0
D.f(x)在[a,b]上單調遞增,但f(b)的符號無法判斷
A.f(x)在[a,b]上單調遞增,且f(b)>0
B.f(x)在[a,b]上單調遞增,且f(b)<0
C.f(x)在[a,b]上單調遞減,且f(b)<0
D.f(x)在[a,b]上單調遞增,但f(b)的符號無法判斷
| 3 |
| 5 |
| 3x+1 |
| 1 |
| 3 |
A.單調遞增 B.單凋遞減
C.先單調遞增后單調遞減 D.先單調遞減后單調遞增
一.選擇
1. 選B 滿足f[f(x)]=x有2個 ①1→1,2→2 ②1→2,2→1
2. 選C 只需注意.files\image130.gif)
3. 選C
當
時 .files\image136.gif)
4. 選D 分組(1),(2,2),(3,3,3),(4,4,4,4)……
前13組共用去1+2+……+13=
個數,而第14組有14個數,
故第100項是在第14組中.
5. 選D 由于0<a<b 有f(a)=f(b) 故0<a<
, b>.files\image140.gif)
即 f(a)=2-a2 , f(b)=b2-2
由2-a2= b2-2得到a2+b2=4且a≠b ∴0<ab<2
6.選B 由已知
∴
∴
.
7.選D 由
.
8.選C 設正方體的邊長為a,當截面為菱形,即過相對棱(如AA1及CC1)時,
面積最小, 此時截面為邊長
,兩對角線分別為
和
的菱形,
此時
,當截面過兩相對棱(如BC及A1D1)時截面積最大,
此時
∴.files\image161.gif)