題目列表(包括答案和解析)
如圖,已知直線
(
)與拋物線
:
和圓
:
都相切,
是
的焦點.
(Ⅰ)求
與
的值;
(Ⅱ)設
是
上的一動點,以
為切點作拋物線
的切線
,直線
交
軸于點
,以
、
為鄰邊作平行四邊形
,證明:點
在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點
所在的定直線為
, 直線
與
軸交點為
,連接
交拋物線
于
、
兩點,求△
的面積
的取值范圍.
![]()
【解析】第一問中利用圓
:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即
,解得
(
舍去)
設
與拋物線的相切點為
,又
,得
,
.
代入直線方程得:
,∴
所以
,![]()
第二問中,由(Ⅰ)知拋物線
方程為
,焦點
. ………………(2分)
設
,由(Ⅰ)知以
為切點的切線
的方程為
.
令
,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴
因為
是定點,所以點
在定直線![]()
第三問中,設直線
,代入
得
結合韋達定理得到。
解:(Ⅰ)由已知,圓
:
的圓心為
,半徑
.由題設圓心到直線
的距離
.
即
,解得
(
舍去). …………………(2分)
設
與拋物線的相切點為
,又
,得
,
.
代入直線方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線
方程為
,焦點
. ………………(2分)
設
,由(Ⅰ)知以
為切點的切線
的方程為
.
令
,得切線
交
軸的
點坐標為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴
因為
是定點,所以點
在定直線
上.…(2分)
(Ⅲ)設直線
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是![]()
在△ABC中,角A、B、C的對邊分別為a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),滿足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)設
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值為3,求k的值.
【解析】本試題主要考查了向量的數量積和三角函數,以及解三角形的綜合運用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二問中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-
=3,得k=
.
設拋物線
:
(
>0)的焦點為
,準線為
,
為
上一點,已知以
為圓心,
為半徑的圓
交
于
,
兩點.
(Ⅰ)若
,
的面積為
,求
的值及圓
的方程;
(Ⅱ)若
,
,
三點在同一條直線
上,直線
與
平行,且
與
只有一個公共點,求坐標原點到
,
距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關系、點到直線距離公式、線線平行等基礎知識,考查數形結合思想和運算求解能力.
【解析】設準線
于
軸的焦點為E,圓F的半徑為
,
![]()
則|FE|=
,
=
,E是BD的中點,
(Ⅰ) ∵
,∴
=
,|BD|=
,
設A(
,
),根據拋物線定義得,|FA|=
,
∵
的面積為
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=
, ∴圓F的方程為:
;
(Ⅱ) 解析1∵
,
,
三點在同一條直線
上, ∴
是圓
的直徑,
,
由拋物線定義知
,∴
,∴
的斜率為
或-
,
∴直線
的方程為:
,∴原點到直線
的距離
=
,
設直線
的方程為:
,代入
得,
,
∵
與
只有一個公共點,
∴
=
,∴
,
∴直線
的方程為:
,∴原點到直線
的距離
=
,
∴坐標原點到
,
距離的比值為3.
解析2由對稱性設
,則![]()
點
關于點
對稱得:![]()
得:
,直線![]()
切點![]()
直線![]()
坐標原點到
距離的比值為![]()
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
| A+B |
| 2 |
| A-B |
| 2 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com